Opening Sequences for HPC on Demand

By Nicole Hemsoth

May 11, 2011

Next generation DNA sequencing has brought a wealth of opportunities in research, pharmaceutical and clinical contexts, but for those who are in the high performance computing space, this particular market is bursting with a different array of opportunities. From specialty clusters dedicated exclusively to crunching the overwhelming amounts of data coming of sequencers (not to mention the storage might to keep it all in check) the biosciences industry is a prime target for vendors of all stripes.

Interestingly, with the rise of cloud computing and on-demand resources, investment in hardware for many companies isn’t always the first option. According to Tom Coull, Senior Vice President at Penguin Computing, a large number of DNA-driven companies are finding on-demand HPC a perfect fit, especially since their demands for high throughput computing are large but generally sporadic.

Providers of on-demand high performance computing that have an eye on this particular industry (Penguin Computing, Cycle Computing, and SGI in particular) have little elbow room in this tight market to garner valuable life sciences business. In addition to competing with public cloud resources like Amazon EC2, not to mention competition from traditional modes of computing (buying your own cluster) such services have to run a tight ship to keep their own hardware investments churning at peak capacity.

This issue of peak capacity is critical for both users of on-demand HPC and for the providers themselves. Naturally a provider like Penguin wants to make sure their investment is being fully utilized and they’re retuning a profit on the core hours spent. On the flip side, however, life sciences companies want to make sure that they’re balancing time-to-market concerns with core competency arguments.

To be more specific about this balance of issues, we spoke to Abe Lietz who heads IT for a major life sciences firm, Life Technologies. This global company provides a range of solutions for customers in the industry, from biological products for research to the instrumentation to back next-generation DNA sequencing efforts. In short, as Abe told us, “our core competency is about keeping pace with a rapidly changing industry; things change quickly and it’s not part of our goal to put the extreme time and resources into running our own IT the right way.”

Life Technologies is using Penguin Computing’s HPC on-demand (POD) offering to back a web interface into one of its most popular software packages for gene sequence analysis, Bioscope. While on the surface this might sound like a simple enough offering, the complexity of Bioscope and the fact that it is residing on collocated servers in Salt Lake City goes deeper than one might imagine.

Users log in through solidbioscope.com and are able to use the pay as you go model to analyze genomic data, using Penguin’s storage and resources exclusively. Penguin’s Coull noted that the pricing is roughly equivalent to what you might get with a similar cloud provider but unlike with a public cloud, users are able to know exactly where their data is at any given moment—an important issue for the HIPPA compliance-aware.

Coull also noted that for genomics researchers considering this from a purely cost-driven basis, if you’ve built and maintained a cluster based on peak requirements and you’re not using it at 35 percent on a full-time basis, you’re better off using an on-demand resource provider.  During our phone interview he was watching POD activity from his screen and noted that of the applications that were running at any given moment, a good estimation is that 50% of users have replaced their in-house systems electing to use POD exclusively while the other half were the sporadic users who make up a nice portion of the life sciences on-demand market due to the spotty need for big computation.

On a side note, Coull says that Penguin expects 4-fold growth over the next year for their POD service with the build-out of two AMD and Intel partnerships for new POD centers. Although he didn’t comment what percent of the business was life sciences driven, he noted this market was “significant” and that they’d seen a surprising uptick from academic institutions that needed extra resources.

Coull noted as well that their software stack has been tweaked by users to be able to bridge over to other cloud computing options, including Amazon’s S3, due to the fact that it seems to be one of the most popular storage options for this type of user.

It’s worth noting, by the way, that this was not Life Technology’s first interaction with Penguin Computing. The company had been providing hardware services to support Life Technologies’ proprietary software since 2007.

According to Penguin, this is a side effect of having a solid reputation with customers who are software-driven—if their in-house systems perform well and they like the service and support, it’s a natural fit for users to consider using their remote resources if they fit the bill.

Coull noted that some users are getting creative about using the POD service. For instance, during his occasional glances at the real-time reports from the POD interface, there were Life Technologies training sessions going on in real time, which gave users the chance to work in a hands-on fashion with the software.

VP of Life Technologies, Jeff Cafferty also weighed on this, noting that beyond sheer training, potential customers interested in evaluating analytics options (since there are many—and many are non-proprietary) could hop on the POD-driven solidbioscope.com resource and compare results, including mappability and other specific factors.

In addition to extolling the benefits of the cloud beyond just analytics, Cafferty told us, “We are in the post-human genome sequencing project phase of life sciences” what’s happened in this last decade is that companies like ours have been developing evermore high throughput technologies for sequencing DNA and furthermore the cost of sequencing has gone down tremendously. What this means is that there’s been a huge explosion in the amount of sequence information available for life sciences researchers.

This is a fact that is driving the next big buzzphrase after cloud computing—“big data”—into every marketing message, particularly on the storage end, for obvious reasons. While the massive data end of the equation is a major factor that is causing genomics researchers to consider looking beyond physical hardware, the computational requirements are nothing to sneeze at either.

Caffrey put this in context, noting that to sequence a human genome researchers are dealing with something that is 3 billion base pairs long. Their instrumentation for next generation sequencing creates what are called “short reads” of DNA and in one genome, this creates billions such reads that then need to be mapped back to a reference genome.

He also elaborated on a topic that is growing nearer and dearer to storage, compute, software and cloud vendors alike: “Life sciences researchers have traditionally functioned on an experimental model that involved a great deal of time generating data (biological samples can be rare or hard to extra information from) and relatively small amounts of time analyzing it, in part because there just wasn’t very much of it. In sequencing in particular this paradigm has been flipped—we’re now generating a tremendous amount of data in a very short period of time and thus the length now is because of the mining, management, comparing and analysis of all that data.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This