Opening Sequences for HPC on Demand

By Nicole Hemsoth

May 11, 2011

Next generation DNA sequencing has brought a wealth of opportunities in research, pharmaceutical and clinical contexts, but for those who are in the high performance computing space, this particular market is bursting with a different array of opportunities. From specialty clusters dedicated exclusively to crunching the overwhelming amounts of data coming of sequencers (not to mention the storage might to keep it all in check) the biosciences industry is a prime target for vendors of all stripes.

Interestingly, with the rise of cloud computing and on-demand resources, investment in hardware for many companies isn’t always the first option. According to Tom Coull, Senior Vice President at Penguin Computing, a large number of DNA-driven companies are finding on-demand HPC a perfect fit, especially since their demands for high throughput computing are large but generally sporadic.

Providers of on-demand high performance computing that have an eye on this particular industry (Penguin Computing, Cycle Computing, and SGI in particular) have little elbow room in this tight market to garner valuable life sciences business. In addition to competing with public cloud resources like Amazon EC2, not to mention competition from traditional modes of computing (buying your own cluster) such services have to run a tight ship to keep their own hardware investments churning at peak capacity.

This issue of peak capacity is critical for both users of on-demand HPC and for the providers themselves. Naturally a provider like Penguin wants to make sure their investment is being fully utilized and they’re retuning a profit on the core hours spent. On the flip side, however, life sciences companies want to make sure that they’re balancing time-to-market concerns with core competency arguments.

To be more specific about this balance of issues, we spoke to Abe Lietz who heads IT for a major life sciences firm, Life Technologies. This global company provides a range of solutions for customers in the industry, from biological products for research to the instrumentation to back next-generation DNA sequencing efforts. In short, as Abe told us, “our core competency is about keeping pace with a rapidly changing industry; things change quickly and it’s not part of our goal to put the extreme time and resources into running our own IT the right way.”

Life Technologies is using Penguin Computing’s HPC on-demand (POD) offering to back a web interface into one of its most popular software packages for gene sequence analysis, Bioscope. While on the surface this might sound like a simple enough offering, the complexity of Bioscope and the fact that it is residing on collocated servers in Salt Lake City goes deeper than one might imagine.

Users log in through solidbioscope.com and are able to use the pay as you go model to analyze genomic data, using Penguin’s storage and resources exclusively. Penguin’s Coull noted that the pricing is roughly equivalent to what you might get with a similar cloud provider but unlike with a public cloud, users are able to know exactly where their data is at any given moment—an important issue for the HIPPA compliance-aware.

Coull also noted that for genomics researchers considering this from a purely cost-driven basis, if you’ve built and maintained a cluster based on peak requirements and you’re not using it at 35 percent on a full-time basis, you’re better off using an on-demand resource provider.  During our phone interview he was watching POD activity from his screen and noted that of the applications that were running at any given moment, a good estimation is that 50% of users have replaced their in-house systems electing to use POD exclusively while the other half were the sporadic users who make up a nice portion of the life sciences on-demand market due to the spotty need for big computation.

On a side note, Coull says that Penguin expects 4-fold growth over the next year for their POD service with the build-out of two AMD and Intel partnerships for new POD centers. Although he didn’t comment what percent of the business was life sciences driven, he noted this market was “significant” and that they’d seen a surprising uptick from academic institutions that needed extra resources.

Coull noted as well that their software stack has been tweaked by users to be able to bridge over to other cloud computing options, including Amazon’s S3, due to the fact that it seems to be one of the most popular storage options for this type of user.

It’s worth noting, by the way, that this was not Life Technology’s first interaction with Penguin Computing. The company had been providing hardware services to support Life Technologies’ proprietary software since 2007.

According to Penguin, this is a side effect of having a solid reputation with customers who are software-driven—if their in-house systems perform well and they like the service and support, it’s a natural fit for users to consider using their remote resources if they fit the bill.

Coull noted that some users are getting creative about using the POD service. For instance, during his occasional glances at the real-time reports from the POD interface, there were Life Technologies training sessions going on in real time, which gave users the chance to work in a hands-on fashion with the software.

VP of Life Technologies, Jeff Cafferty also weighed on this, noting that beyond sheer training, potential customers interested in evaluating analytics options (since there are many—and many are non-proprietary) could hop on the POD-driven solidbioscope.com resource and compare results, including mappability and other specific factors.

In addition to extolling the benefits of the cloud beyond just analytics, Cafferty told us, “We are in the post-human genome sequencing project phase of life sciences” what’s happened in this last decade is that companies like ours have been developing evermore high throughput technologies for sequencing DNA and furthermore the cost of sequencing has gone down tremendously. What this means is that there’s been a huge explosion in the amount of sequence information available for life sciences researchers.

This is a fact that is driving the next big buzzphrase after cloud computing—“big data”—into every marketing message, particularly on the storage end, for obvious reasons. While the massive data end of the equation is a major factor that is causing genomics researchers to consider looking beyond physical hardware, the computational requirements are nothing to sneeze at either.

Caffrey put this in context, noting that to sequence a human genome researchers are dealing with something that is 3 billion base pairs long. Their instrumentation for next generation sequencing creates what are called “short reads” of DNA and in one genome, this creates billions such reads that then need to be mapped back to a reference genome.

He also elaborated on a topic that is growing nearer and dearer to storage, compute, software and cloud vendors alike: “Life sciences researchers have traditionally functioned on an experimental model that involved a great deal of time generating data (biological samples can be rare or hard to extra information from) and relatively small amounts of time analyzing it, in part because there just wasn’t very much of it. In sequencing in particular this paradigm has been flipped—we’re now generating a tremendous amount of data in a very short period of time and thus the length now is because of the mining, management, comparing and analysis of all that data.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This