Opening Sequences for HPC on Demand

By Nicole Hemsoth

May 11, 2011

Next generation DNA sequencing has brought a wealth of opportunities in research, pharmaceutical and clinical contexts, but for those who are in the high performance computing space, this particular market is bursting with a different array of opportunities. From specialty clusters dedicated exclusively to crunching the overwhelming amounts of data coming of sequencers (not to mention the storage might to keep it all in check) the biosciences industry is a prime target for vendors of all stripes.

Interestingly, with the rise of cloud computing and on-demand resources, investment in hardware for many companies isn’t always the first option. According to Tom Coull, Senior Vice President at Penguin Computing, a large number of DNA-driven companies are finding on-demand HPC a perfect fit, especially since their demands for high throughput computing are large but generally sporadic.

Providers of on-demand high performance computing that have an eye on this particular industry (Penguin Computing, Cycle Computing, and SGI in particular) have little elbow room in this tight market to garner valuable life sciences business. In addition to competing with public cloud resources like Amazon EC2, not to mention competition from traditional modes of computing (buying your own cluster) such services have to run a tight ship to keep their own hardware investments churning at peak capacity.

This issue of peak capacity is critical for both users of on-demand HPC and for the providers themselves. Naturally a provider like Penguin wants to make sure their investment is being fully utilized and they’re retuning a profit on the core hours spent. On the flip side, however, life sciences companies want to make sure that they’re balancing time-to-market concerns with core competency arguments.

To be more specific about this balance of issues, we spoke to Abe Lietz who heads IT for a major life sciences firm, Life Technologies. This global company provides a range of solutions for customers in the industry, from biological products for research to the instrumentation to back next-generation DNA sequencing efforts. In short, as Abe told us, “our core competency is about keeping pace with a rapidly changing industry; things change quickly and it’s not part of our goal to put the extreme time and resources into running our own IT the right way.”

Life Technologies is using Penguin Computing’s HPC on-demand (POD) offering to back a web interface into one of its most popular software packages for gene sequence analysis, Bioscope. While on the surface this might sound like a simple enough offering, the complexity of Bioscope and the fact that it is residing on collocated servers in Salt Lake City goes deeper than one might imagine.

Users log in through solidbioscope.com and are able to use the pay as you go model to analyze genomic data, using Penguin’s storage and resources exclusively. Penguin’s Coull noted that the pricing is roughly equivalent to what you might get with a similar cloud provider but unlike with a public cloud, users are able to know exactly where their data is at any given moment—an important issue for the HIPPA compliance-aware.

Coull also noted that for genomics researchers considering this from a purely cost-driven basis, if you’ve built and maintained a cluster based on peak requirements and you’re not using it at 35 percent on a full-time basis, you’re better off using an on-demand resource provider.  During our phone interview he was watching POD activity from his screen and noted that of the applications that were running at any given moment, a good estimation is that 50% of users have replaced their in-house systems electing to use POD exclusively while the other half were the sporadic users who make up a nice portion of the life sciences on-demand market due to the spotty need for big computation.

On a side note, Coull says that Penguin expects 4-fold growth over the next year for their POD service with the build-out of two AMD and Intel partnerships for new POD centers. Although he didn’t comment what percent of the business was life sciences driven, he noted this market was “significant” and that they’d seen a surprising uptick from academic institutions that needed extra resources.

Coull noted as well that their software stack has been tweaked by users to be able to bridge over to other cloud computing options, including Amazon’s S3, due to the fact that it seems to be one of the most popular storage options for this type of user.

It’s worth noting, by the way, that this was not Life Technology’s first interaction with Penguin Computing. The company had been providing hardware services to support Life Technologies’ proprietary software since 2007.

According to Penguin, this is a side effect of having a solid reputation with customers who are software-driven—if their in-house systems perform well and they like the service and support, it’s a natural fit for users to consider using their remote resources if they fit the bill.

Coull noted that some users are getting creative about using the POD service. For instance, during his occasional glances at the real-time reports from the POD interface, there were Life Technologies training sessions going on in real time, which gave users the chance to work in a hands-on fashion with the software.

VP of Life Technologies, Jeff Cafferty also weighed on this, noting that beyond sheer training, potential customers interested in evaluating analytics options (since there are many—and many are non-proprietary) could hop on the POD-driven solidbioscope.com resource and compare results, including mappability and other specific factors.

In addition to extolling the benefits of the cloud beyond just analytics, Cafferty told us, “We are in the post-human genome sequencing project phase of life sciences” what’s happened in this last decade is that companies like ours have been developing evermore high throughput technologies for sequencing DNA and furthermore the cost of sequencing has gone down tremendously. What this means is that there’s been a huge explosion in the amount of sequence information available for life sciences researchers.

This is a fact that is driving the next big buzzphrase after cloud computing—“big data”—into every marketing message, particularly on the storage end, for obvious reasons. While the massive data end of the equation is a major factor that is causing genomics researchers to consider looking beyond physical hardware, the computational requirements are nothing to sneeze at either.

Caffrey put this in context, noting that to sequence a human genome researchers are dealing with something that is 3 billion base pairs long. Their instrumentation for next generation sequencing creates what are called “short reads” of DNA and in one genome, this creates billions such reads that then need to be mapped back to a reference genome.

He also elaborated on a topic that is growing nearer and dearer to storage, compute, software and cloud vendors alike: “Life sciences researchers have traditionally functioned on an experimental model that involved a great deal of time generating data (biological samples can be rare or hard to extra information from) and relatively small amounts of time analyzing it, in part because there just wasn’t very much of it. In sequencing in particular this paradigm has been flipped—we’re now generating a tremendous amount of data in a very short period of time and thus the length now is because of the mining, management, comparing and analysis of all that data.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

Xilinx Says Its New FPGA is World’s Largest

August 21, 2019

In this age of exploding “technology disaggregation” – in which the Big Bang emanating from the Intel x86 CPU has produced significant advances in CPU chips and a raft of alternative, accelerated architectures... Read more…

By Doug Black

Supercomputers Generate Universes to Illuminate Galactic Formation

August 20, 2019

With advanced imaging and satellite technologies, it’s easier than ever to see a galaxy – but understanding how they form (a process that can take billions of years) is a different story. Now, a team of researchers f Read more…

By Oliver Peckham

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Singularity Moves Up the Container Value Chain

August 20, 2019

The enterprise version of the Singularity HPC container platform released this week by Sylabs is designed to allow users to create, secure and share the high-end containers in self-hosted production deployments. The e Read more…

By George Leopold

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

IBM Deepens Plunge into Open Source; OpenPOWER to Join Linux Foundation

August 20, 2019

IBM today announced it was contributing the instruction set (ISA) for its Power microprocessor and the designs for the Open Coherent Accelerator Processor Inter Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This