International Project Readies Climate Models For Exascale Era

By Michael Feldman

May 12, 2011

However well-meaning, the efforts of individual nations to curb climate change will always fall short. Given that climate does not respect national borders, global cooperation will be the key to any solution. While international political cooperation to deal with the issue has been frustratingly slow, at least one aspect of the problem is now getting some global focus: climate modeling.

The first international effort to bring climate simulation software onto the next-generation exascale platforms got underway earlier this spring. The project, named Enabling Climate Simulation (ECS) at Extreme Scale, is being funded by the G8 Research Councils Initiative on Multilateral Research and brings together some of the heavy-weight organizations in climate research and computer science, not to mention some of the top supercomputers on the planet.

This project came out of the ongoing collaboration of University of Illinois at Urbana-Champaign (UIUC) and the French National Institute for Research in Computer Science and Control (INRIA) though their Joint Laboratory for Petascale Computing and takes advantage of the support of NCSA, which will provide access to the upcoming multi-petaflop Blue Waters system.

In a nutshell, the objective of the G8 ECS project is to investigate how to efficiently run climate simulations on future exascale systems and get correct results. It will focus on three main topics: (1) how to complete simulations with correct results despite frequent system failures; (2) how to exploit hierarchical computers with hardware accelerators close to their peak performance; and (3) how to run efficient simulations with 1 billion threads. This project also aims at educate new generations of climate and computer scientists about techniques for high performance computing at extreme scale.

The team is led by the UIUC’s Marc Snir (project director), and INRIA’s Franck Cappello (associate director). It gathers researchers from five of the G8 nations: the US (University of Illinois at Urbana Champaign, University of Tennessee and National Center for Atmospheric Research), France (INRIA), Germany (German Research School for Simulation Sciences), Japan (Tokyo Tech and University of Tsukuba), Canada (University of Victoria) and Spain (Barcelona Supercomputing Center).

HPCwire got the opportunity to ask project director Mark Snir and atmospheric scientist Don Wuebbles at UIUC and INRIA’s Franck Cappello about the particulars of the G8 ECS effort and to provide some perspective on what it means to the climate research and computer science communities.

HPCwire: How do the current climate models that are being run on terascale and petascale systems fall short?

Don Wuebbles: There is a strong need to run global climate models with detailed treatments of atmospheric, land, ocean, and biospheric processes at very high resolution, with the newest generation of climate models that can be run on petascale computers being able to get to a horizontal resolution of as low as about 13 kilometers. Such a capability allows for many relevant processes to be treated without having to make the severe approximations and parameterizations found in the models used in previous climate assessments.

As an example, it is now known that ocean models need to be run at roughly a tenth of a degree or about 10 kilometers horizontal resolution in order to adequately represent ocean eddy processes. Even on a petascale machine, only a limited number of runs can be done with the new high resolution models. A exascale machine will allow for even high resolution as new dynamical cores are developed. Even more important though is that ensembles of the climate analyses extending over many hundreds of years can be run, thus allowing better representation of natural variability in the climate system.

In addition, exascale computing will allow for well-characterized studies of the uncertainties in modeling of the climate system that are impossible on current computer systems because of the extensive resources required.

HPCwire: Will  ECS effort be able leverage any of the work done by the International Exacale Software Project (IESP)?

Marc Snir: Many partners of the project are active participants of IESP either as leader, members of the executive committee or experts of IESP. The research program has been defined taking into account the IESP results. IESP work was a instrumental in the clarification of the challenges and the definition of the research scope in the three main topic of our ECS project. Our project also carefully followed the discussions within the European Exascale Software Initiative (EESI) and Japan, where several G8 ECS partners are playing leading roles. IESP was instrumental in motivating the RFP that was issued jointly by seven of the G8 countries. However, one should remember that IESP established a roadmap. New collaborations are needed to implement it. The program that funds us and five other projects is a (very modest) first step in this direction.

HPCwire: What kinds of assumptions will have to be made about the future exascale systems to redesign the software?

Franck Cappello: We tried to take reasonable assumptions according to the current state of the art, the projections made in the exascale preparation reports and discussions with hardware developers. These assumptions are essentially following the ones considered in IESP. Exascale systems are likely to have hybrid (SIMD plus sequential) cores, hundreds of cores per chip, many chips per nodes and deep memory hierarchies. Another important element is the uncertainty about the system MTBF predictions. This essentially will depends on the level of masking provided by the hardware.

A key choice in our project was to test our research idea on a significant variety of available HPC systems: Blue Waters, Blue Gene P and Q, Tsubame2, the K machine in Kobe and Marenostrum2. We believe that what we will learn by testing our improvements on these machines will help us to better prepare climate code for exascale.

HPCwire: What kinds of changes to today’s climate simulations do you anticipate to bring this software into the exascale realm?

Cappello: Our project focuses on three key issues: system level scalability, node level performance and resilience. No existing climate model scales to the order of a million cores. Thus, studying system level scalability is a critical. The main research driver is to preserve locality, since strong locality will be crucial for performance. We shall explore three key areas: topology and computation-intensity-aware mappings of simulation processes to system, communication-computation overlap, and the use of asynchronous collective communications.

Concerning node level performance, we shall explore modeling and auto-tuning/scheduling of intra-node heterogeneity with massive numbers of cores, for example, GPUs; exploiting locality and latency hiding extensively to mitigate the performance impact of intra-node traffic; and studying task parallelism for the physics modules in the atmosphere model.

ECS will address resilience from multiple complementary approaches, including resilient climate simulation algorithms, new programming extensions for resilience, and new fault tolerant protocols for uncoordinated checkpointing and partial restart. These three approaches could be considered as three levels of failure management, each level being triggered when the previous one is not enough to recover the execution.

Our work is by no means a full solution to the problem of exascale climate simulations. New algorithms will be needed. There is another G8 project that looks at algorithm changes to enhance scalability.

New programming models may be needed to better support fine-grain communication and load balancing. Some of us are involved in other projects that focus on this problem. However, our work is, to a large extent, agnostic on these issues.

HPCwire: By the time the first exascale systems appear in 2018 to 2020, climate change will almost certainly be much further along than it is now. Assuming we’re able move the software onto these exascale platforms and obtain a much more accurate representation of the climate system, what will policy makers be able to do with these results?

Snir: I suspect that all participants in our project believe that the time to act on global warming is now, not ten years from now. The unfortunate situation is that we seem incapable of radical action, for a variety of reasons. It is hard to have international action when any individual country will be better served by shirking its duties — the prisoner’s paradox — and it is hard to act when the cost of action is immediate and the reward is far in the future.

As unfortunate as this is, we might have to think of mitigation, rather than remediation. More accurate simulations will decrease the existing uncertainty about the rate of global warming and its effects; and will be needed to assess the effect of unmitigated climate change, and the effect of various mitigation actions. Current simulations use 100 km grids. At that scale, California is represented by a few points, with no discrimination between Coast Range and Central Valley, or Coastal Range and Sacrament-San Joaquin Delta. Clearly, global warming will have very different effects on these different geographies. With better simulations, each House member will know how his or her district will be impacted.

HPCwire: How much funding is available for this work and over what time period? Is each country contributing?

Cappello: This three-year project receives G8 coordinated funding from the Natural Sciences and Engineering Research Council of Canada (NSERC), French National Research Agency (ANR), German Research Foundation (DFG), Japan Society for the Promotion of Science (JSPS) and the National Science Foundation (NSF). This project, together with five other projects, was funded as part of the G8 Research Councils Initiative on Multilateral Research, Interdisciplinary Program on Application Software towards Exascale Computing for Global Scale Issues.

This is the first initiative of its kind to foster broad international collaboration on the research needed to enable effective use of future exascale platforms. The total funding for this initiative is modest, about 10 million euros over 3 years, spread over 6 projects.

HPCwire: Is that enough money to meet the goals of the project? Do you anticipate follow-on funding?

Snir: The project has received enough money to fund the research phase and develop separated prototypes on the three main topics. Our focus is on understanding the limitations of current codes and developing a methodology for making future codes more performing and more resilient. The development of these future codes will require significantly higher funding. We expect to collaborate with other teams that are continuing to improve climate codes and seek future funding to continue our work as new codes are developed.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Prize, of course, comes with an award of $10,000 courtesy of H Read more…

Q&A with ORNL’s Bronson Messer, an HPCwire Person to Watch in 2022

August 12, 2022

HPCwire presents our interview with Bronson Messer, distinguished scientist and director of Science at the Oak Ridge Leadership Computing Facility (OLCF), ORNL, and an HPCwire 2022 Person to Watch. Messer recaps ORNL's journey to exascale and sheds light on how all the pieces line up to support the all-important science. Also covered are the role... Read more…

TACC Simulations Probe the First Days of Stars, Black Holes

August 12, 2022

The stunning images produced by the James Webb Space Telescope and recent supercomputer-enabled black hole imaging efforts have brought the early days of the universe quite literally into sharp focus. Researchers from th Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

Argonne Deploys Polaris Supercomputer for Science in Advance of Aurora

August 9, 2022

Argonne National Laboratory has made its newest supercomputer, Polaris, available for scientific research. The system, which ranked 14th on the most recent Top500 list, is serving as a testbed for the exascale Aurora system slated for delivery in the coming months. The HPE-built Polaris system (pictured in the header) consists of 560 nodes... Read more…

AWS Solution Channel

Shutterstock 1519171757

Running large-scale CFD fire simulations on AWS for Amazon.com

This post was contributed by Matt Broadfoot, Senior Fire Strategy Manager at Amazon Design and Construction, and Antonio Cennamo ProServe Customer Practice Manager, Colin Bridger Principal HPC GTM Specialist, Grigorios Pikoulas ProServe Strategic Program Leader, Neil Ashton Principal, Computational Engineering Product Strategy, Roberto Medar, ProServe HPC Consultant, Taiwo Abioye ProServe Security Consultant, Talib Mahouari ProServe Engagement Manager at AWS. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1689646429

Gain a Competitive Edge using Cloud-Based, GPU-Accelerated AI KYC Recommender Systems

Financial services organizations face increased competition for customers from technologies such as FinTechs, mobile banking applications, and online payment systems. To meet this challenge, it is important for organizations to have a deep understanding of their customers. Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed and lauded the ambitious piece of legislation, which over the course of the legislative process broadened to include hundreds of billions in additional science and technology spending. He was flanked by Speaker... Read more…

Q&A with ORNL’s Bronson Messer, an HPCwire Person to Watch in 2022

August 12, 2022

HPCwire presents our interview with Bronson Messer, distinguished scientist and director of Science at the Oak Ridge Leadership Computing Facility (OLCF), ORNL, and an HPCwire 2022 Person to Watch. Messer recaps ORNL's journey to exascale and sheds light on how all the pieces line up to support the all-important science. Also covered are the role... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

Argonne Deploys Polaris Supercomputer for Science in Advance of Aurora

August 9, 2022

Argonne National Laboratory has made its newest supercomputer, Polaris, available for scientific research. The system, which ranked 14th on the most recent Top500 list, is serving as a testbed for the exascale Aurora system slated for delivery in the coming months. The HPE-built Polaris system (pictured in the header) consists of 560 nodes... Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed and lauded the ambitious piece of legislation, which over the course of the legislative process broadened to include hundreds of billions in additional science and technology spending. He was flanked by Speaker... Read more…

12 Midwestern Universities Team to Boost Semiconductor Supply Chain

August 8, 2022

The combined stressors of Covid-19 and the invasion of Ukraine have sent every major nation scrambling to reinforce its mission-critical supply chains – including and in particular the semiconductor supply chain. In the U.S. – which, like much of the world, relies on Asia for its semiconductors – those efforts have taken shape through the recently... Read more…

Quantum Pioneer D-Wave Rings NYSE Bell, Begins Life as Public Company

August 8, 2022

D-Wave Systems, one of the early quantum computing pioneers, has completed its SPAC deal to go public. Its merger with DPCM Capital was completed last Friday, and today, D-Wave management rang the bell on the New York Stock Exchange. It is now trading under two ticker symbols – QBTS and QBTS WS (warrant shares), respectively. Welcome to the public... Read more…

Supercomputer Models Explosives Critical for Nuclear Weapons

August 6, 2022

Lawrence Livermore National Laboratory (LLNL) is one of the laboratories that operates under the auspices of the National Nuclear Security Administration (NNSA), which manages the United States’ stockpile of nuclear weapons. Amid major efforts to modernize that stockpile, LLNL has announced that researchers from its own Energetic Materials Center... Read more…

SEA Changes: How EuroHPC Is Preparing for Exascale

August 5, 2022

Back in June, the EuroHPC Joint Undertaking – which serves as the EU’s concerted supercomputing play – announced its first exascale system: JUPITER, set to be installed by the Jülich Supercomputing Centre (FZJ) in 2023. But EuroHPC has been preparing for the exascale era for a much longer time: eight months... Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

ISC 2022 Booth Video Tours

AMD
AWS
DDN
Dell
Intel
Lenovo
Microsoft
PENGUIN SOLUTIONS

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

AMD Lines Up Alternate Chips as It Eyes a ‘Post-exaflops’ Future

June 10, 2022

Close to a decade ago, AMD was in turmoil. The company was playing second fiddle to Intel in PCs and datacenters, and its road to profitability hinged mostly on Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire