The Weekly Top Five

By Tiffany Trader

May 12, 2011

The Weekly Top Five features the five biggest HPC stories of the week, condensed for your reading pleasure. This week, we cover the Cray-Sandia partership to found a knowledge institute; RenderStream’s FireStream-based workstations and servers; NVIDIA’s CUDA center growth; Reservoir Labs and Intel’s extreme scale ambitions; and Jülich Supercomputing Centre’s new hybrid cluster. Plus a bonus section.

Cray, Sandia Combine Efforts to Foster Knowledge Discovery

Prominent supercomputer vendor Cray Inc. and Sandia National Laboratories have come together to establish the Supercomputing Institute for Learning and Knowledge Systems (SILKS). This is a Cooperative Research and Development Agreement (CRADA), a private-public collaboration, which aims to promote knowledge discovery, data management and informatics computing. SILKS is located at Sandia’s Albuquerque-based headquarters and draws from its founders’ hardware and software resources as well as the experience and knowledge of their research staff.

The founding partners declared three primary goals for the endeavor:

1. Accelerate the development and application of high performance computing (HPC) technologies focused on solving knowledge discovery, data management and informatics problems at scale.

2. Collaborate to overcome the implementation barriers to a wider adoption of data-driven HPC computing technologies in knowledge discovery, data management and informatics.

3. Apply the use of these technologies to enable discovery and innovation in science, engineering and for homeland security.

The broad-based agenda will tackle a range of technology domains, including software, hardware, services, education and outreach. Representatives from both Sandia and Cray anticipate the collaborative effort will result in cutting-edge technologies and solutions.

RenderStream Releases AMD-based Servers and Workstations for OpenCL

Addressing the need for GPU-accelerated HPC, 3D workstation specialist RenderStream has launched its AMD Radeon-based servers and workstations for OpenCL. These 21.6 teraflop systems also support OpenGL and Brooks based applications and product development. According to a company statement, GPGPU high-performance computing using AMD GPUs shows great potential for information security, medical imaging, computer graphics and rendering, server side rendering, finite-difference-time-domain (FDTD), electro-magnetics, physics, bio-science and EDA.”

RenderStream’s AMD Radeon HD 6970 based VDACTr8 and its HD 6990 based VDAC4x2 implement 1,536 stream processors and eight GPUs per system, providing access to 12,288 cores and 21.6 teraflops of computing power when operating at an over-clocked peak performance.

The official announcement illustrates the server’s performance-boosting capabilities with this real-world example from the field of information security:

Using the integer-based oclHashCat, RenderStream’s customers are seeing near linear scaling in computational power which simply trounces the 4,096 cores and 12.6 teraflops of our GTX 580 based VDACTr8. In this example the HD 6970 and HD 6990 based VDACTr8 evaluated over 45 billion solutions per second versus 18 billion for the GTX 580 based systems, depending on the implementation.

RenderStream offers general purpose GPU systems as well as HPC-specific GPU-based platforms outfitted with either NVIDIA Tesla or AMD FireStream graphics processors.

NVIDIA CUDA Centers Number Four Hundred

 

This week, NVIDIA announced the addition of 35 new CUDA Research Centers and CUDA Teaching Centers, bringing the total number of such centers to 400. The latest partner institutions come from 14 countries, evidence of parallel computing’s — and NVIDIA’s — global reach.

The centers will leverage the parallel computing power of NVIDIA’s CUDA-based GPUs to tackle a bevy of challenging computing issues, as well as teach thousands of students cutting-edge GPU programming skills. CUDA Research Centers employ GPU computing across multiple domains, while the CUDA Teaching Centers have incorporated GPU computing techniques into their main computer programming curriculum. NVIDIA explains that its CUDA Research Center Program “fosters collaboration at institutions that are expanding the frontier of parallel computing.” Partners benefit from “exclusive events with key researchers and academics, a designated NVIDIA technical liaison, and access to specialized online and in-person training sessions.”

For a full listing of the newest CUDA Research Centers and CUDA Teaching Centers, see the official announcement.

Reservoir Labs, Intel Partner on DARPA UHPC Project

Reservoir Labs announced it will collaborate with Intel researchers on the development of compiler technologies and architectures in order to create viable extreme scale computing by the year 2018. The duo have signed a subcontracting agreement that brings Reservoir Labs research scientists and technologies to Intel’s team to develop Extreme Scale computing technologies as part of DARPA’s Ubiquitous High Performance Computing (UHPC) research program.

According to the release: “The goal of the UHPC program is to develop 1 PFLOPS (HPL) single cabinet systems, including self-contained cooling, that overcome significant energy efficiency, security, and programmability challenges. Essentially this can be viewed as integrating the computational capacity of today’s largest supercomputers in 100x less area, with 100x less power, and with significant increases in programmability and applicability.”

Intel’s UHPC team is tasked with supporting and developing technologies to enable the US to build extreme scale computers by the year 2018. In order for this challenging goal to come to fruition, major breakthroughs in hardware and software design will be necessary, far beyond the level of current commercial offerings. Just improving the energy efficiency levels of computers by more than 100x will require significant advancements.

If these goals are achieved, the resulting technology would benefit embedded applications, such as those found in ship, land, and air-based Department of Defense systems. Exteme scale systems would also further other DoD objectives, such as Intelligence Surveillance Reconnaissance (ISR), Electronic Warfare (EW), Integrated Air and Missile Defense (IAMD), battle management and planning, and cyber security.

The initial contract calls for the project to furnish a “proof of concept” implementing extreme scale technologies in a first-pass system design by 2012. A second phase is also outlined, which if DARPA elects to continue, could lead to a completed system design for 2014 timeframe. The full scope of the contract specifies the delivery of a prototype extreme scale system in 2018.

Jülich Supercomputing Centre Debuts Hybrid System

A new GPU-accelerated system will support high-level research at the Jülich Supercomputing Centre (JSC) in Germany. The hybrid cluster, named JUDGE, for “Jülich Dedicated GPU Environment,” relies on GPUs to boost processing power, while minimizing energy consumption. JUDGE will be used for data-intensive workloads in the fields of biology, medicine and environmental research.

The cluster was built using 54 IBM System x iDataPlex server nodes with 12 cores each and 96 GB memory, as well as 108 NVIDIA M2050 GPUs. The release describes IBM iDataPlex as “a scalable system that can significantly reduce energy consumption, cooling and space requirements.”

Martin Hiegl, the team leader for Deep Computing Sales at IBM Germany, commented, “Together with JSC’s other powerful supercomputers, the new JUDGE cluster supports Germany’s ability to tackle a wide range of scientific and technical challenges.”

Sales leader for HPC at NVIDIA, Stefan Kraemer, believes the hybrid design, which relies on the GPU’s accelerative force, will be the template for the coming exascale generation. “The JUDGE cluster is a good example of how we need to continue to develop computers in the future, following the target of exascale computing. This is valid not only in regard to performance, but also to energy consumption and energy efficiency,” he states, adding: “Pilot projects like JUDGE play a key role in this process and are a key step on the way to hybrid systems.”

JUDGE is not the first IBM/JSC collaboration. The duo united to create the QPACE supercomputer, which consistently ranks among the top ten of the Green500 list of the world’s most energy efficient supercomputers, and also worked together on the Blue Gene/P-based JUGENE, one the most powerful computers in Europe with a peak performance of more than one petaflop.

Bonus News:

There was such a grand allotment of noteworthy news this week that we are presenting our first ever bonus link section:

Cray to Upgrade XE6 Supercomputer at University of Edinburgh

SGI Expands Support for Lustre File System

Solarflare Announces Sale of 10GBASE-T Assets

RunTime Computing Introduces VSI/Pro Support for NVIDIA CUDA

Tilera Adds Wind River Linux and Workbench Support

IBM Introduces Tape Library Technology Capable of Storing Nearly 3 Exabytes of Data

French Engineering Firm EURO/CFD Extends HPC Cluster to 720 Processors

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This