NVIDIA Revs Up Tesla GPU

By Michael Feldman

May 17, 2011

GPU maker NVIDIA has ratcheted up the core count and clock speed on its Tesla GPU processor. The new M2090 module for servers delivers 665 double precision gigaflops, representing close to a 30 percent increase over the previous generation Tesla part. The memory bandwidth on the device was bumped up as well, from 150 GB/second to 178 GB/second. The new GPU boosts performance significantly across a number of HPC codes.

The big change for the new GPU is the additional CUDA cores — from 448 on the previous generation M2070, to 512 on the M2090. The Fermi (20-series) GPU design was spec’d from the beginning to hit 512 cores, but in the original version only managed to reach 448.

According to Sumit Gupta, NVIDIA’s senior product manager for the Tesla group, that was because the original Fermi layout and 40nm process technology from chip manufacturer TSMC (Taiwan Semiconductor Manufacturing Company) could only accommodate the lesser core count at the power envelope they were comfortable with, which in this case was 225 watts. With a tweaked processor design and an optimized 40nm process, NVIDIA and TSMC were able to get the full 512 cores on the new chip. In addition, there was enough thermal headroom to crank up the GPU clock from 1.15 GHz to 1.30 GHz.

Likewise, a faster clock on the memory side accounted for the jump in bandwidth there. In this case, they increased the speed from 1.56 GHz to 1.85 GHz, boosting bandwidth to and from the local GDDR5 memory by nearly 19 percent (from 150 GB/second to 178 GB/second). That’s a nice bump, especially for codes that are sensitive to the memory bottleneck.

The speedier M2090 managed to deliver between 20 to 30 percent more performance on a number key technical computing codes, compared to running the software on the previous M2070 hardware. These include 25 percent faster execution for Linpack, 20 percent for Kirchoff time migration (oil and gas), 30 percent for Wang-Landau/LSMS (material science), 20 percent for SIMULIA’s Abaqus FEA (manufacturing), and more than 22 percent for AMBER (molecular dynamics/life science).

AMBER, a widely used code to for biomolecular simulations, got an extra GPU performance boost with additional optimization on the software side. According to NVIDIA, the combo of faster hardware and software enables researcher to use just four GPUs to perform simulations that until recently required a good-sized CPU-based cluster or supercomputer.

A quad-M2090 system, encapsulated in just one or two servers, can deliver 69 nanoseconds of biomolecular simulations per day. (Last September at the GPU Technology Conference, NVIDIA reported than an IBM iDataPlex cluster with eight GPUs achieved 52 ns/day with AMBER.) While that might not seem like the swiftest execution for molecular twiddling, it represents the high water mark for AMBER simulations on any machine, supercomputer or otherwise. The result is that scientists with a only a departmental sized budget can buy their own system that runs AMBER at levels that used to only be possible at national labs.

In fact, getting four graphics devices in a single server is relatively easy nowadays. OEMs like Appro, ASUS, and HP all offer such GPU density, with HP’s ProLiant SL390 G7 (of TSUBAME fame) available with up to eight GPUs and two CPUs in a half-width 4U tray. With the latest M2090 hardware now available in the SL390 G7, organizations of relatively modest means can build a 100-teraflop system that fits into a single rack.

That steeper GPU:CPU ratio, exemplified by the HP gear, is becoming more commonplace says NVIDIA’s Gupta. “As more and more applications start taking advantage of GPUs and those applications become more optimized for the GPUs, I think the density of GPUs to CPUs is going to keep increasing,” he told HPCwire.

Also, as CPU core counts rise, there is less of a need for multiple CPUs in a server if the end use is exclusively for heavily GPU-accelerated applications. Given that one CPU core can drive a GPU device, a single six-, eight- or 12-core x86 processor may be all that is required for such codes.

All the OEMs with a GPU offering using NVIDIA’s M20xx devices are expected to move up to the new M2090. Besides HP, that includes IBM, SGI, Bull, Appro, ASUS, Supermicro, NextIO, and Tyan. The M2090 may also be the hardware going into the upcoming GPU-equipped variant of the Cray XE6 supercomputer, scheduled for launch later this year. Although I speculated last week that this machine might get NVIDIA’s next-generation Kepler GPU, the fact that NVIDIA just released its Tesla kicker probably indicates at least a six-month wait for the next product. In any case, since Kepler will land on TSMC’s 28nm process node, NVIDIA will have to wait until that fab technology is mature enough to handle complex, multi-billion transistor designs.

All of that means Kepler will most likely launch sometime in the first half of 2012. Until then the new Fermi-class M2090 will be carrying the HPC load for the GPU maker. Although theoretically, NVIDIA could tweak the Tesla GPU one more time; with the next-generation architecture just over the horizon, there is probably little motivation to do so. “We’re looking to Kepler now,” says Gupta.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Touts OpenPOWER Ecosystem, Announces New Customers, Products for AI and Hyperscale

March 20, 2018

At SC17 in Denver four months ago, Ken King, GM, OpenPOWER, IBM Systems Group, told a somewhat jaundiced trio of journalists that 2018 would, finally, after several years of expectations, be the year OpenPOWER and IBM’ Read more…

By Doug Black

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate scientists the ability to use machine learning to identify e Read more…

By Rob Farber

Mellanox Reacts to Activist Investor Pressures in Letter to Shareholders

March 16, 2018

Activist investor Starboard Value has been exerting pressure on Mellanox Technologies to increase its returns. In response, the high-performance networking company on Monday, March 12, published a letter to shareholders outlining its proposal for a May 2018 extraordinary general meeting (EGM) of shareholders and highlighting its long-term growth strategy and focus on operating margin improvement. Read more…

By Staff

HPE Extreme Performance Solutions

Harness the Full Power of HPC Servers with an Effective Cooling Approach

High performance computing (HPC) innovation is rapidly transforming the way we operate – with an onslaught of cutting-edge technologies designed to optimize applications and workloads, increase productivity, and enable better business outcomes. Read more…

Quantum Computing vs. Our ‘Caveman Newtonian Brain’: Why Quantum Is So Hard

March 15, 2018

Quantum is coming. Maybe not today, maybe not tomorrow, but soon enough. Within 10 to 12 years, we’re told, special-purpose quantum systems will enter the commercial realm. Assuming this happens, we can also assume that quantum will, over extended time, become increasingly general purpose as it delivers mind-blowing power. Read more…

By Doug Black

IBM Touts OpenPOWER Ecosystem, Announces New Customers, Products for AI and Hyperscale

March 20, 2018

At SC17 in Denver four months ago, Ken King, GM, OpenPOWER, IBM Systems Group, told a somewhat jaundiced trio of journalists that 2018 would, finally, after sev Read more…

By Doug Black

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theo Read more…

By Tiffany Trader

Hyperion Tackles Elusive Quantum Computing Landscape

March 13, 2018

Quantum computing - exciting and off-putting all at once - is a kaleidoscope of technology and market questions whose shapes and positions are far from settled. Read more…

By John Russell

Part Two: Navigating Life Sciences Choppy HPC Waters in 2018

March 8, 2018

2017 was not necessarily the best year to build a large HPC system for life sciences say Ari Berman, VP and GM of consulting services, and Aaron Gardner, direct Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

SciNet Launches Niagara, Canada’s Fastest Supercomputer

March 5, 2018

SciNet and the University of Toronto today unveiled "Niagara," Canada's most-powerful supercomputer, comprising 1,500 dense Lenovo ThinkSystem SD530 high-perfor Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

World Record: Quantum Computer with 46 Qubits Simulated

December 18, 2017

Scientists from the Jülich Supercomputing Centre have set a new world record. Together with researchers from Wuhan University and the University of Groningen, Read more…

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This