NVIDIA Revs Up Tesla GPU

By Michael Feldman

May 17, 2011

GPU maker NVIDIA has ratcheted up the core count and clock speed on its Tesla GPU processor. The new M2090 module for servers delivers 665 double precision gigaflops, representing close to a 30 percent increase over the previous generation Tesla part. The memory bandwidth on the device was bumped up as well, from 150 GB/second to 178 GB/second. The new GPU boosts performance significantly across a number of HPC codes.

The big change for the new GPU is the additional CUDA cores — from 448 on the previous generation M2070, to 512 on the M2090. The Fermi (20-series) GPU design was spec’d from the beginning to hit 512 cores, but in the original version only managed to reach 448.

According to Sumit Gupta, NVIDIA’s senior product manager for the Tesla group, that was because the original Fermi layout and 40nm process technology from chip manufacturer TSMC (Taiwan Semiconductor Manufacturing Company) could only accommodate the lesser core count at the power envelope they were comfortable with, which in this case was 225 watts. With a tweaked processor design and an optimized 40nm process, NVIDIA and TSMC were able to get the full 512 cores on the new chip. In addition, there was enough thermal headroom to crank up the GPU clock from 1.15 GHz to 1.30 GHz.

Likewise, a faster clock on the memory side accounted for the jump in bandwidth there. In this case, they increased the speed from 1.56 GHz to 1.85 GHz, boosting bandwidth to and from the local GDDR5 memory by nearly 19 percent (from 150 GB/second to 178 GB/second). That’s a nice bump, especially for codes that are sensitive to the memory bottleneck.

The speedier M2090 managed to deliver between 20 to 30 percent more performance on a number key technical computing codes, compared to running the software on the previous M2070 hardware. These include 25 percent faster execution for Linpack, 20 percent for Kirchoff time migration (oil and gas), 30 percent for Wang-Landau/LSMS (material science), 20 percent for SIMULIA’s Abaqus FEA (manufacturing), and more than 22 percent for AMBER (molecular dynamics/life science).

AMBER, a widely used code to for biomolecular simulations, got an extra GPU performance boost with additional optimization on the software side. According to NVIDIA, the combo of faster hardware and software enables researcher to use just four GPUs to perform simulations that until recently required a good-sized CPU-based cluster or supercomputer.

A quad-M2090 system, encapsulated in just one or two servers, can deliver 69 nanoseconds of biomolecular simulations per day. (Last September at the GPU Technology Conference, NVIDIA reported than an IBM iDataPlex cluster with eight GPUs achieved 52 ns/day with AMBER.) While that might not seem like the swiftest execution for molecular twiddling, it represents the high water mark for AMBER simulations on any machine, supercomputer or otherwise. The result is that scientists with a only a departmental sized budget can buy their own system that runs AMBER at levels that used to only be possible at national labs.

In fact, getting four graphics devices in a single server is relatively easy nowadays. OEMs like Appro, ASUS, and HP all offer such GPU density, with HP’s ProLiant SL390 G7 (of TSUBAME fame) available with up to eight GPUs and two CPUs in a half-width 4U tray. With the latest M2090 hardware now available in the SL390 G7, organizations of relatively modest means can build a 100-teraflop system that fits into a single rack.

That steeper GPU:CPU ratio, exemplified by the HP gear, is becoming more commonplace says NVIDIA’s Gupta. “As more and more applications start taking advantage of GPUs and those applications become more optimized for the GPUs, I think the density of GPUs to CPUs is going to keep increasing,” he told HPCwire.

Also, as CPU core counts rise, there is less of a need for multiple CPUs in a server if the end use is exclusively for heavily GPU-accelerated applications. Given that one CPU core can drive a GPU device, a single six-, eight- or 12-core x86 processor may be all that is required for such codes.

All the OEMs with a GPU offering using NVIDIA’s M20xx devices are expected to move up to the new M2090. Besides HP, that includes IBM, SGI, Bull, Appro, ASUS, Supermicro, NextIO, and Tyan. The M2090 may also be the hardware going into the upcoming GPU-equipped variant of the Cray XE6 supercomputer, scheduled for launch later this year. Although I speculated last week that this machine might get NVIDIA’s next-generation Kepler GPU, the fact that NVIDIA just released its Tesla kicker probably indicates at least a six-month wait for the next product. In any case, since Kepler will land on TSMC’s 28nm process node, NVIDIA will have to wait until that fab technology is mature enough to handle complex, multi-billion transistor designs.

All of that means Kepler will most likely launch sometime in the first half of 2012. Until then the new Fermi-class M2090 will be carrying the HPC load for the GPU maker. Although theoretically, NVIDIA could tweak the Tesla GPU one more time; with the next-generation architecture just over the horizon, there is probably little motivation to do so. “We’re looking to Kepler now,” says Gupta.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

HPE Extreme Performance Solutions

HPC-Driven Weather Simulations Improving Forecasting Capabilities

In September of 1938, a massive hurricane traversed the Atlantic Ocean and made landfall in New England. Due to inadequate and incorrect forecasting, the storm struck farther north and with greater intensity than had been predicted, leaving residents and authorities with virtually no warning or time to properly prepare. Read more…

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Intel Open Sources All Lustre Work, Brent Gorda Exits

April 19, 2017

In a letter to the Lustre community posted on the Intel website, Vice President of Intel's Data Center Group Trish Damkroger writes that effective immediately the company will be contributing all Lustre development to the open source community. Damkroger also announced that Brent Gorda, General Manager, High Performance Data Division at Intel is leaving the company. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC and the Colocation Datacenter – a Bridge Too Far?

April 7, 2017

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. Read more…

By Clive Longbottom, Quocirca

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This