NVIDIA Revs Up Tesla GPU

By Michael Feldman

May 17, 2011

GPU maker NVIDIA has ratcheted up the core count and clock speed on its Tesla GPU processor. The new M2090 module for servers delivers 665 double precision gigaflops, representing close to a 30 percent increase over the previous generation Tesla part. The memory bandwidth on the device was bumped up as well, from 150 GB/second to 178 GB/second. The new GPU boosts performance significantly across a number of HPC codes.

The big change for the new GPU is the additional CUDA cores — from 448 on the previous generation M2070, to 512 on the M2090. The Fermi (20-series) GPU design was spec’d from the beginning to hit 512 cores, but in the original version only managed to reach 448.

According to Sumit Gupta, NVIDIA’s senior product manager for the Tesla group, that was because the original Fermi layout and 40nm process technology from chip manufacturer TSMC (Taiwan Semiconductor Manufacturing Company) could only accommodate the lesser core count at the power envelope they were comfortable with, which in this case was 225 watts. With a tweaked processor design and an optimized 40nm process, NVIDIA and TSMC were able to get the full 512 cores on the new chip. In addition, there was enough thermal headroom to crank up the GPU clock from 1.15 GHz to 1.30 GHz.

Likewise, a faster clock on the memory side accounted for the jump in bandwidth there. In this case, they increased the speed from 1.56 GHz to 1.85 GHz, boosting bandwidth to and from the local GDDR5 memory by nearly 19 percent (from 150 GB/second to 178 GB/second). That’s a nice bump, especially for codes that are sensitive to the memory bottleneck.

The speedier M2090 managed to deliver between 20 to 30 percent more performance on a number key technical computing codes, compared to running the software on the previous M2070 hardware. These include 25 percent faster execution for Linpack, 20 percent for Kirchoff time migration (oil and gas), 30 percent for Wang-Landau/LSMS (material science), 20 percent for SIMULIA’s Abaqus FEA (manufacturing), and more than 22 percent for AMBER (molecular dynamics/life science).

AMBER, a widely used code to for biomolecular simulations, got an extra GPU performance boost with additional optimization on the software side. According to NVIDIA, the combo of faster hardware and software enables researcher to use just four GPUs to perform simulations that until recently required a good-sized CPU-based cluster or supercomputer.

A quad-M2090 system, encapsulated in just one or two servers, can deliver 69 nanoseconds of biomolecular simulations per day. (Last September at the GPU Technology Conference, NVIDIA reported than an IBM iDataPlex cluster with eight GPUs achieved 52 ns/day with AMBER.) While that might not seem like the swiftest execution for molecular twiddling, it represents the high water mark for AMBER simulations on any machine, supercomputer or otherwise. The result is that scientists with a only a departmental sized budget can buy their own system that runs AMBER at levels that used to only be possible at national labs.

In fact, getting four graphics devices in a single server is relatively easy nowadays. OEMs like Appro, ASUS, and HP all offer such GPU density, with HP’s ProLiant SL390 G7 (of TSUBAME fame) available with up to eight GPUs and two CPUs in a half-width 4U tray. With the latest M2090 hardware now available in the SL390 G7, organizations of relatively modest means can build a 100-teraflop system that fits into a single rack.

That steeper GPU:CPU ratio, exemplified by the HP gear, is becoming more commonplace says NVIDIA’s Gupta. “As more and more applications start taking advantage of GPUs and those applications become more optimized for the GPUs, I think the density of GPUs to CPUs is going to keep increasing,” he told HPCwire.

Also, as CPU core counts rise, there is less of a need for multiple CPUs in a server if the end use is exclusively for heavily GPU-accelerated applications. Given that one CPU core can drive a GPU device, a single six-, eight- or 12-core x86 processor may be all that is required for such codes.

All the OEMs with a GPU offering using NVIDIA’s M20xx devices are expected to move up to the new M2090. Besides HP, that includes IBM, SGI, Bull, Appro, ASUS, Supermicro, NextIO, and Tyan. The M2090 may also be the hardware going into the upcoming GPU-equipped variant of the Cray XE6 supercomputer, scheduled for launch later this year. Although I speculated last week that this machine might get NVIDIA’s next-generation Kepler GPU, the fact that NVIDIA just released its Tesla kicker probably indicates at least a six-month wait for the next product. In any case, since Kepler will land on TSMC’s 28nm process node, NVIDIA will have to wait until that fab technology is mature enough to handle complex, multi-billion transistor designs.

All of that means Kepler will most likely launch sometime in the first half of 2012. Until then the new Fermi-class M2090 will be carrying the HPC load for the GPU maker. Although theoretically, NVIDIA could tweak the Tesla GPU one more time; with the next-generation architecture just over the horizon, there is probably little motivation to do so. “We’re looking to Kepler now,” says Gupta.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This