A New Generation of Smarter, Not Faster, Supercomputers

By Nicole Hemsoth

May 19, 2011

As the exascale era looms, a number of research groups are pinpointing the bevy of barriers that the next generation of elite systems will bring.

From his vantage point as Argonne National Lab’s Associate Director for Computing, Environmental, and Life Sciences, Rick Stevens has identified the key challenges of the leap to billion-core systems. In a recent Department of Energy report on the coming challenges and benefits of exascale computing, he said that while the magnitude of the programming challenges ahead is daunting, power is also a major concern.

According to Stevens, a billion-processor computer, if relying on efficient technologies we have now, will gobble over a gigawatt of electricity. To put that in context, even the top-performing utility power plants in the United States generate only a few gigawatts, with most producing less than four. While he contends that GPU computing is one way to curb this incredible hunger for energy, as it stands now, one single exascale machine could require its own dedicated power plant.

Outside of programming and energy consumption, the other barrier to exascale systems is general reliability. He says that with the vast increase in core count comes a vast possibility of failures, noting “If you just scale up from today’s technology, an exascale computer wouldn’t stay up for more than a few minutes at a time” which means that a machine’s failure rate would be once per week or more, at least if you consider that Lawrence Livermore National Lab’s IBM BlueGene/L drops off about once every two weeks.

With the massive boost in power requirements and reliability worries, the role of hyper-smart cluster management software will become more critical. This is a topic that Bill Nitzberg, the self-described “cynical engineer” who serves as CTO for Altair Engineering’s PBS Works division, is quite passionate about, even though he’s “heard it all before” in the pre-petascale days.

Even in high performance computing where every element is being pushed to the limit, it can be a little tough to get excited about the middleware piece of the HPC race. Of course, without the behind the scenes scheduling and workload management, all the raw clustered compute power in the world is essentially useless. And when it comes to this scale of computing where all the challenges that Rick Stevens alluded to can eventually be mitigated (at varying levels) via effective management, middleware might get more attention that it used to.

Nitzberg revealed how the next generation of supercomputers will need to be brainier, not brawnier. He might be biased, coming as he does from the cluster management perspective, so but the fact is—the two most problematic elements of exascale systems outside of programming (power and reliability) can have significant solutions at the management layer.

He says that instead of focusing our attention on making the next generation of supercomputers simply use less power, he claims there also needs to be a focus on making very wise use of what power is available.

As Nitzberg said, “When I think about the future of computing, whether it’s GPUs, clouds, whatever, I see a lot of trends—the issue of power is no trend, this is an ongoing problem we’ll need to face. When I think of making the future generation of computers smarter, the computer scientist in me thinks about optimization and the environmental side of me thinks about power.”

Nitzberg puts this idea of wise power management over mere reduction in context, noting that there needs to be a way for operators of ultra-scale machines to reconsider what workloads they choose to run and when they do so. This might sound, on the surface, very simple—this idea of picking jobs wisely to maximize power and cost efficiency—but he argues that many systems need to be proven for funders as running at peak capacity. He sees this as a concept that might suit the funding powers that be in the short term, but over the long term, the costs of operating such systems will spiral out of control. Running at 99 percent capacity isn’t always necessary and sure isn’t cheap.

Many HPC management software layers provide energy-aware features. For example, Nitzberg described the “Green Provisioning” feature in their PBS Professional product. This, like Platform Computing’s Dynamic Power Optimizer, uses sophisticated monitoring tools that shut down, restart, and reroute according to temperature and other factors in large data center enviornments. According to PBS Works, this solution was “validated by several large-scale customers and has lowered their energy use by up to 20 percent.”

Louis Westby from Platform Computing told us, “There is already a lot out there to help users power up an down, but there are innovations missing in a lot of those solutions. Temperature level monitoring across an entire data center at that scale to ensure there is a steady influx of power and management of heat are, of course, very important when it’s at [exascale].”

Platform Computing, Bright Computing and PBS Works already have power management solutions available that power down systems according to fault detection and they also manage data center temperatures to reroute workloads according to these readings. Open source solutions are also trying to keep pace but as Nitzberg told us, there is no way that the open source solutions available are able to keep pace with the many demands that will come at exascale.

Platform’s Westby said that their solutions on power management are very similar to that of PBS and indeed, as Nitzberg noted, there are still innovations to be made before any workload suite would be ready to tackle the challenges of exascale. Westby noted that they have an eye on the future in terms of smart energy management. She says that one area that affects energy consumption is making sure that the system is able to intelligently handle temperature fluctuations and focus on fail-proof failover mechanisms.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break “Speed Limit”

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Intel Ships Drives Based on 3-D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3-D XPoint non-volatile memory technology as it targets data-driven workloads. Read more…

By George Leopold

Researchers Recreate ‘El Reno’ Tornado on Blue Waters Supercomputer

March 16, 2017

The United States experiences more tornadoes than any other country. About 1,200 tornadoes touch down each each year in the U.S. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

AMD Expands Exascale Vision at IEEE HPC Symposium

March 7, 2017

With the race towards exascale heating up – for example, the Exascale Computing Program PathForward awards are expected soon – AMD delivered more details of its exascale vision at last month’s 23rd IEEE Symposium on High Performance Computer Architecture. The chipmaker presented an “Exascale Node Architecture (ENA) as the primary building block for exascale machine” including descriptions of component, interconnect, and packaging strategy along with simulation benchmarks to bolster its case. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This