The University of Florida speeds up memory intensive gene research with Dell HPC solution

By Nicole Hemsoth

May 23, 2011

The University of Florida speeds up memory intensive gene research with Dell HPC solution

The whirlwind speed of progress in the computer industry happens at an exponential rate that can be predicted. According to Moore’s Law, the processing speed, memory capacity and even the number of pixels in digital cameras doubles every two years. But there is a branch of technology that’s evolving even faster: gene sequencing, the ordering of nucleotides that make up a strand of DNA in an organism. Gene sequencing is the basis of the whole group of life sciences that study the genetic makeup of humans and other organisms in order to extend life.

Compared with capillary-based sequencing technology of just a few years ago, today’s next-generation sequencing is able to produce a million times more data, which drives up the demands for computation and storage.

“We’ve gone from first-generation DNA sequencing instruments in the 1990s that analyzed 384 sequences at one time to instruments deriving 400 million sequences in parallel,” says Bill Farmerie, associate director of the Interdisciplinary Center for Biotechnology Research (ICBR) at the University of Florida. “And as the volume of data is growing exponentially, that cost of data production has come down by a factor of 100,000.”

Speeding up the pace of biotechnology research

The University of Florida is working to satisfy the demand for faster computers in its ICBR. There, scientists are working with Dell and Intel technology to construct the next generation of high performance computing (HPC) clusters that can keep up with the computational needs of the gene sequencing industry.

“We need to attack larger problems, larger genomes, larger samples and just get larger views of the systems we are studying,” says Aaron Gardner, cyber infrastructure director, Interdisciplinary Center for Biotechnology Research, University of Florida.

As the query sets and databases the queries are run against grew over time, the amount of memory that was available on a computer became of paramount importance. For best performance, it was necessary to cache numerous databases in memory and parallelize the algorithms being used so that they could all share memory between the nodes. The concept of symmetric multiprocessing (SMP) in the HPC cluster evolved to become virtual symmetric multiprocessing (VSMP), in which multiple physical systems appear to function as a single logical system.

Achieving very large shared memory

“We found that traditional HPC on a cluster wasn’t working because we had hard limits on how much memory was available on a single node, and often the software was ill equipped to be able to distribute these databases across all the nodes in a cluster,” says Gardner. “The VSMP system allows us to have a very large shared memory space where we can cache in memory all of the sequence databases and all of the queries that we are searching against. This makes them accessible to all the processors at the same time with minimal latency.”

To build the cluster, the ICBR populated a Dell PowerEdge M1000e modular blade enclosure with 16 Dell PowerEdge M610 blade servers with Intel Xeon processors 5560 and DDR3 memory, which provides approximately one terabyte of shared memory. A quad data rate (QDR), 40 Gb per second Mellanox M3601Q InfiniBand blade switch sourced through Dell busses all the memory and CPU calls between blades.

“We specifically waited for the Intel Xeon processors 5500 series to be developed because of the Intel QuickPath technology which enables all the cores on the individual CPUs, as well as the adjacent sockets within a system, to more quickly route data between their caches,” says Gardner. “Using DDR3 memory with Intel Xeon processors 5500 series is a good match because the processor has higher available bandwidth and memory interface. When we paired the Intel processor with DDR3 with QDR InfiniBand, we were able to minimize latency and improve throughput in the VSMP system for memory performance. The Intel Xeon processors 5500 series alone give us a raw performance improvement of 40 percent up from the previous generation of Intel processors, so we’re building our system on a much faster processor.”

ICBR chose the Dell PowerEdge M1000e blade chassis for the VSMP system for multiple reasons. “It was the only system that we considered that could get us the buffered DDR3 DIMMs that we needed within our time constraints,” says Gardner. “Of the systems we considered, it was also the only one available with QDR InfiniBand, and it facilitates the InfiniBand interconnect between the nodes using the backplane, so there are no cables involved. That increases the reliability and uptime of the VSMP system. So the Dell system was the most complete system, feature wise, for deploying the VSMP solution, as opposed to the others we considered.”

Reducing management overhead

The dual Dell Chassis Management Controllers (CMC) in the PowerEdge M1000e modular blade enclosure provide redundant, secure access paths for administrators to manage the blades from a single console as a single system image. Integrated Dell Remote Access Cards for all the blades and enclosure enable remote management, which, along with reduced complexity on the management end, helped to give Gardner’s team more time to work with researchers on how to best utilize the resources.

“Another factor that we like is the power footprint,” says Gardner. “The Dell PowerEdge blade system has only six power supplies, three of which are required to run the system, and those are higher efficiency power supplies. It helps us to save 6U-10U of rack space and also save on the limited resources we have in our server room for power and cooling versus having power supplies in each discrete system.”

The VSMP technology itself is provided by Dell Business Partner ScaleMP. With ScaleMP vSMP Foundation for SMP software, multiple physical systems appear to function as a single logical system. The innovative ScaleMP Versatile SMP (vSMP) architecture aggregates multiple x86 systems into a single virtual x86 system, delivering an industry-standard, high-end SMP computer. ScaleMP uses software to replace custom hardware and components to offer a new, revolutionary computing paradigm.

Fast setup and deployment

Once ICBR received the Dell enclosure and blades, it took Gardner and his team about three hours to get it racked and powered up and do the diagnostics. “We were taking our time,” says Gardner. “We could have done it faster.”

Deploying the VSMP software took about one day with a ScaleMP representative on site facilitating the VSMP technology. “We were able to accomplish that because the Dell hardware functioned without a hitch,” says Gardner. “And also because we had already created a standardized hardened production image that we were able to deploy on the system. We’ve purchased a lot of hardware from Dell in the past, so it was very easy for us to work within the existing relationship and arrive at the VSMP solution quickly.”

Up to 160x faster results

Prior to the VSMP solution, there were several applications that the university was running on a standard SMP cluster of x86 machines with unsatisfactory results. “We were hitting the memory limits on individual nodes, which meant that the jobs took longer and sometimes just failed,” says Gardner. “So having this larger memory system has enabled us both to get jobs done and to see them through to completion. We’ve seen some substantial performance improvements because we’re able to run all of the data in memory, without going to disk. For example, one assembly application had taken 10 days on our old cluster, and it took only an hour and a half to complete on the Dell VSMP cluster.”

In addition, the university is able to allow researchers to run these jobs in an interactive, real-time manner, rather than waiting in a queue. This enables them to experiment more, and even develop new analysis methods with the system. “This really helps to achieve a better answer in terms of the analysis we’re performing,” says Gardner. “For instance, a DeNova assembly application was swapping to disk because all of the sequences and alignments could not fit into memory. Before we had the VSMP system, we would have had to resort to discarding some sequences, or assembling several smaller assemblies together. These approaches can sometimes produce inferior or misleading results, and cause you to lose consistency and depth with the assembly statistics the software captures. By being able to successfully assembly all of a project’s data at once and get the result back quickly, we are empowered to iterate parameters and adapt our analysis methods in near real time. This is preferable to waiting a week and being forced to work with whatever we get due to the time constraints involved in rerunning those types of jobs.”

Completing the circle

In addition to the Dell VSMP solution, ICBR has been purchasing Dell PowerConnect 6248, 6224, 6220, 5224 Gigabit Ethernet switches for networking infrastructure. “We like the stacking capabilities of the Dell switches,” says Gardner. “We’ve also purchased some Dell PowerConnect 8024 10 Gigabit Ethernet switches as a front-end interconnect to replace our existing Gigabit infrastructure.

With recent 10GbE hardware we are starting to see the performance improve to an acceptable level and we can run almost any protocol over 10GbE. We can also pull a larger portion of our computing staff into supporting research computing because the networking and storage protocols and paradigms with 10GbE are familiar to them.”

As ICBR provides its researchers with the faster processing power they demand, the science of gene sequence will speed up and produce faster results for the life sciences. The immediate result will be more research projects and more grants to fund them.

“It’s all in the papers,” says Farmerie. “By publishing papers, our scientists use the data from the Dell VSMP cluster to generate the next round of proposals that will attract funding. So there’s the cycle that has to be completed each time in order to drive the process of science further down the road.”

See how The University of Florida is using their Dell HPC Solutions to Enable Scientific Research

For more information go to: DellHPCSolutions.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

STEM-Trekker Badisa Mosesane Attends CERN Summer Student Program

June 27, 2017

Badisa Mosesane, an undergraduate scholar who studies computer science at the University of Botswana in Gaborone, recently joined other students from developing nations around the world in Geneva, Switzerland to particip Read more…

By Elizabeth Leake, STEM-Trek

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This