Cray Unveils Its First GPU Supercomputer

By Michael Feldman

May 24, 2011

Cray has released the details of its GPU-equipped supercomputer: the XK6. The machine is a derivative of the XE6, an AMD Opteron-based machine that the company announced a year ago. Although Cray is calling this week’s announcement the XK6 launch, systems will not be available until the second half of the year.

Cray’s pitch for the XK6 is that it enables applications to be productive with GPUs at scale. According to Barry Bolding, vice president of Cray’s products division, they are unique in the GPU computing space because of their long-term commitment to heterogeneous computing and their track record for building productive petascale systems. In addition, he points out that Cray has a legacy of experience with vector-based supercomputing and their associated compilers, most recently with their X2 super, aka “Black Widow.”

Hardware-wise, though, the XK6 is not that different from its CPU-based brethren. The blade is basically a variant of the XE6, replacing four of the eight AMD Opteron sockets with NVIDIA Tesla GPU modules. Each four-node blade consists of two Gemini interconnect chips, four Opteron CPUs, and four NVIDIA Tesla 20-series GPUs. The Tesla in this case is the X2090, a compact form factor of the M2090 module that was introduced last week. Like the M2090, the X2090 sports a 665 gigaflop (double precision) GPU, 6 GB of GDDR5, and 178 GB/second of memory bandwidth. A XK6 cabinet can house up to 24 blades (96 nodes), which will deliver something in the neighborhood of 70 teraflops.

Each XK6 node in the blade pairs a single X2090 GPU with an AMD Interlagos CPU (Opteron 6200), along with 16 or 32 GB of 1600 MHz DDR3 memory. That’s a rather CPU-rich configuration for a GPU-based server, given that many commodity clusters use two, four, or even eight graphics devices per x86 processor. And in many cases those processors are not top-of-the-line Xeons or Opterons.

According to Bolding, their thinking here is that not all supercomputing workloads are able to take maximum advantage of the GPU’s capability, so they’ve opted for a fairly conservative processor mix. “We really envision some applications spending a considerable amount of time running on just the x86 portion of the system,” he told HPCwire. “So we really want to have a balance between scalar and accelerator.”

On the other hand, some customers are likely to have applications that are already highly tuned for GPUs, and in this case would want a system with a higher GPU:CPU ratio. Bolding says, for those users they are willing to build custom machines with a richer GPU configuration, but it would not be the standard XK6 and would entail more than just a tweak to those blades.

Besides the hardware, the XK6 will inherit software stack and programming environment from the XE6, including the Cray Linux Environment (CLE). Added on top will be GPU-specific libraries and tools like NVIDIA’s CUDA SDK for programming the Tesla components. GPU support will also be provided by some of the third-party software that Cray currently resells, like the PGI compilers. The PGI compiler suite has already been extended to generate code for GPUs, and is being integrated and tested with the XK6 . The CAPS enterprise HMPP product for GPUs is also available, but unlike PGI is not currently part of XK6 test suite, and is not being resold by Cray.

Cray also will be developing additional GPU compilers, runtime libraries, and tools, as well as bringing in third-party software, such as EM Photonics’ CULA library, to make the environment richer and more productive. The idea here is to bring GPU acceleration in line with its Adaptive Supercomputing approach. The ultimate goal is to be able to write source code that could automatically be transformed to run on either CPUs, GPUs or some mix of the two. The goal is not just to deliver performance, says Bolding, but to “get your codes to better performance faster.”

To propel that vision, Cray is developing its own OpenMP-based compiler that will be targeted for GPU acceleration. This is a higher-level programming model than CUDA, using special directives within the application source to generate GPU code, much like what is available from PGI today. Unlike that offering however, the OpenMP version from Cray is based on standardized OpenMP directives designed to address hardware accelerators. A pre-production version will be available to selected customers, says Bolding, and will support both Fortran and C.

The directives-based programming tools for GPUs is a key part of Cray’s strategy to turn the XK6 into a productive GPU machine, and an attempt to differentiate it from the current crop of GPU-equipped clusters. Bolding says they expect to get the majority of performance available from lower level programming environments like CUDA, but in a much more productive and portable environment. And even though Cray is developing an OpenMP compiler, their overarching goal is to provide a standard, high-level programming environment that is portable across accelerators. “We really believe that a good programming model has to be hardware independent,” said Bolding.

The whole idea of GPUs in supercomputers, of course, is to accelerate codes amenable to data parallelism. One application set Cray envisions for these supers is weather and climate modeling, an area the company has been particularly successful in. For weather prediction, code acceleration can be especially critical, given the requirement is to deliver accurate results in real time. And for this application, model accuracy is directly related to floating point horsepower.

For example, it is estimated that for a weather forecasting model with a horizontal grid granularity of 40 km, one would need 0.4 petaflops. But to refine that granularity to 10 km, one would need a 20 petaflop system. The floating point requirements are similar for providing greater levels of granularity in climate simulations, but without the need to deliver results in real-time. Although these codes scale well enough on CPUs, the prospect of buying a system with 50 times as many processors to deliver more accurate results is daunting from both an upfront cost basis and the ongoing expense of powering such a system.

Today, the most feasible way to accomplish this level of performance boost is with accelerators. Not that GPUs are particularly cheap. An X2090 is likely to be four to five times as expensive as a top-of-the-line Opteron. But since a 20-series Tesla delivers about 10 times the raw floating point performance at only about twice the power consumption, a GPU solution makes sense as long as the codes can extract those extra FLOPS.

Once you’ve made the initial outlay, though, the XK6 is relatively easy to upgrade. According to Bolding, the next-generation GPUs, such as the future Kepler parts, will be able to be inserted into existing machines with just a module swap on the blade. Once those next-gen GPUs are available, Cray estimates these supercomputers will be able to scale up to 50 peak petaflops.

Also, one doesn’t have to build a pure XK6 machine. The GPU blades can be mixed into existing XE6 configurations, which themselves can be constructed from the older XT6 systems via the insertion of the Gemini interconnect.

Cray’s first XK6 order represents such an upgrade. The Swiss National Supercomputing Centre (CSCS) will use their existing XE6m system as the foundation for a multi-cabinet Cray XK6. The system is to be used to support scientific research in weather forecasting, climatology, chemistry, physics, material sciences, geology, biology, genetics, experimental medicine, astronomy, mathematics and computer sciences.

For the Swiss or anyone else to experience all this GPU goodness, they will have to wait for at least a few months. While the availability of the X2090 coincides with that of the M2090 announced last week, AMD’s Opteron 6200 isn’t expected to hit the streets until Q3. Whether Cray has other dependencies associated with availability, Bolding wouldn’t say.

Cray, of course, could have constructed a GPU machine last year based on the Magny-Cours CPU (Opteron 6100) and X2070 GPU.  HP, IBM, SGI, and practically every other HPC cluster vendor came up with a GPU offering in 2010. But according to Bolding, the XK6 is a more thought-out approach and will be the more productive machine.

“We could have come out with something earlier that wasn’t a complete Cray product, in other words, just a bunch of hardware and a mish-mash of open source software, but we chose not to,” he said. ”Our best mapping of a complete HPC product to the market aligned with the current Cray XK6 timeframe.”

“We’re not first to the party here, but we’re hoping we’re the best dancer,” he added.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Tribute: Dr. Bob Borchers, 1936-2018

June 21, 2018

Dr. Bob Borchers, a leader in the high performance computing community for decades, passed away peacefully in Maui, Hawaii, on June 7th. His memorial service will be held on June 22nd in Reston, Virginia. Dr. Borchers Read more…

By Ann Redelfs

ISC 2018 Preview from @hpcnotes

June 21, 2018

Prepare for your social media feed to be saturated with #HPC, #ISC18, #Top500, etc. Prepare for your mainstream media to talk about supercomputers (in between the hourly commentary on Brexit, the FIFA World Cup, or US pr Read more…

By Andrew Jones

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly but later versions of the Bulldozer line not so much. Fast f Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Preview the World’s Smartest Supercomputer at ISC 2018

Introducing an accelerated IT infrastructure for HPC & AI workloads Read more…

Why Student Cluster Competitions are Better than World Cup

June 21, 2018

My last article about the ISC18 Student Cluster Competition, titled “World Cup is Lame Compared to This Competition”, may have implied that I believe Student Cluster Competitions are better than World Cup soccer in s Read more…

By Dan Olds

ISC 2018 Preview from @hpcnotes

June 21, 2018

Prepare for your social media feed to be saturated with #HPC, #ISC18, #Top500, etc. Prepare for your mainstream media to talk about supercomputers (in between t Read more…

By Andrew Jones

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

European HPC Summit Week and PRACEdays 2018: Slaying Dragons and SHAPEing Futures One SME at a Time

June 20, 2018

The University of Ljubljana in Slovenia hosted the third annual EHPCSW18 and fifth annual PRACEdays18 events which opened May 29, 2018. The conference was chair Read more…

By Elizabeth Leake (STEM-Trek for HPCwire)

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose p Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This