Cray Unveils Its First GPU Supercomputer

By Michael Feldman

May 24, 2011

Cray has released the details of its GPU-equipped supercomputer: the XK6. The machine is a derivative of the XE6, an AMD Opteron-based machine that the company announced a year ago. Although Cray is calling this week’s announcement the XK6 launch, systems will not be available until the second half of the year.

Cray’s pitch for the XK6 is that it enables applications to be productive with GPUs at scale. According to Barry Bolding, vice president of Cray’s products division, they are unique in the GPU computing space because of their long-term commitment to heterogeneous computing and their track record for building productive petascale systems. In addition, he points out that Cray has a legacy of experience with vector-based supercomputing and their associated compilers, most recently with their X2 super, aka “Black Widow.”

Hardware-wise, though, the XK6 is not that different from its CPU-based brethren. The blade is basically a variant of the XE6, replacing four of the eight AMD Opteron sockets with NVIDIA Tesla GPU modules. Each four-node blade consists of two Gemini interconnect chips, four Opteron CPUs, and four NVIDIA Tesla 20-series GPUs. The Tesla in this case is the X2090, a compact form factor of the M2090 module that was introduced last week. Like the M2090, the X2090 sports a 665 gigaflop (double precision) GPU, 6 GB of GDDR5, and 178 GB/second of memory bandwidth. A XK6 cabinet can house up to 24 blades (96 nodes), which will deliver something in the neighborhood of 70 teraflops.

Each XK6 node in the blade pairs a single X2090 GPU with an AMD Interlagos CPU (Opteron 6200), along with 16 or 32 GB of 1600 MHz DDR3 memory. That’s a rather CPU-rich configuration for a GPU-based server, given that many commodity clusters use two, four, or even eight graphics devices per x86 processor. And in many cases those processors are not top-of-the-line Xeons or Opterons.

According to Bolding, their thinking here is that not all supercomputing workloads are able to take maximum advantage of the GPU’s capability, so they’ve opted for a fairly conservative processor mix. “We really envision some applications spending a considerable amount of time running on just the x86 portion of the system,” he told HPCwire. “So we really want to have a balance between scalar and accelerator.”

On the other hand, some customers are likely to have applications that are already highly tuned for GPUs, and in this case would want a system with a higher GPU:CPU ratio. Bolding says, for those users they are willing to build custom machines with a richer GPU configuration, but it would not be the standard XK6 and would entail more than just a tweak to those blades.

Besides the hardware, the XK6 will inherit software stack and programming environment from the XE6, including the Cray Linux Environment (CLE). Added on top will be GPU-specific libraries and tools like NVIDIA’s CUDA SDK for programming the Tesla components. GPU support will also be provided by some of the third-party software that Cray currently resells, like the PGI compilers. The PGI compiler suite has already been extended to generate code for GPUs, and is being integrated and tested with the XK6 . The CAPS enterprise HMPP product for GPUs is also available, but unlike PGI is not currently part of XK6 test suite, and is not being resold by Cray.

Cray also will be developing additional GPU compilers, runtime libraries, and tools, as well as bringing in third-party software, such as EM Photonics’ CULA library, to make the environment richer and more productive. The idea here is to bring GPU acceleration in line with its Adaptive Supercomputing approach. The ultimate goal is to be able to write source code that could automatically be transformed to run on either CPUs, GPUs or some mix of the two. The goal is not just to deliver performance, says Bolding, but to “get your codes to better performance faster.”

To propel that vision, Cray is developing its own OpenMP-based compiler that will be targeted for GPU acceleration. This is a higher-level programming model than CUDA, using special directives within the application source to generate GPU code, much like what is available from PGI today. Unlike that offering however, the OpenMP version from Cray is based on standardized OpenMP directives designed to address hardware accelerators. A pre-production version will be available to selected customers, says Bolding, and will support both Fortran and C.

The directives-based programming tools for GPUs is a key part of Cray’s strategy to turn the XK6 into a productive GPU machine, and an attempt to differentiate it from the current crop of GPU-equipped clusters. Bolding says they expect to get the majority of performance available from lower level programming environments like CUDA, but in a much more productive and portable environment. And even though Cray is developing an OpenMP compiler, their overarching goal is to provide a standard, high-level programming environment that is portable across accelerators. “We really believe that a good programming model has to be hardware independent,” said Bolding.

The whole idea of GPUs in supercomputers, of course, is to accelerate codes amenable to data parallelism. One application set Cray envisions for these supers is weather and climate modeling, an area the company has been particularly successful in. For weather prediction, code acceleration can be especially critical, given the requirement is to deliver accurate results in real time. And for this application, model accuracy is directly related to floating point horsepower.

For example, it is estimated that for a weather forecasting model with a horizontal grid granularity of 40 km, one would need 0.4 petaflops. But to refine that granularity to 10 km, one would need a 20 petaflop system. The floating point requirements are similar for providing greater levels of granularity in climate simulations, but without the need to deliver results in real-time. Although these codes scale well enough on CPUs, the prospect of buying a system with 50 times as many processors to deliver more accurate results is daunting from both an upfront cost basis and the ongoing expense of powering such a system.

Today, the most feasible way to accomplish this level of performance boost is with accelerators. Not that GPUs are particularly cheap. An X2090 is likely to be four to five times as expensive as a top-of-the-line Opteron. But since a 20-series Tesla delivers about 10 times the raw floating point performance at only about twice the power consumption, a GPU solution makes sense as long as the codes can extract those extra FLOPS.

Once you’ve made the initial outlay, though, the XK6 is relatively easy to upgrade. According to Bolding, the next-generation GPUs, such as the future Kepler parts, will be able to be inserted into existing machines with just a module swap on the blade. Once those next-gen GPUs are available, Cray estimates these supercomputers will be able to scale up to 50 peak petaflops.

Also, one doesn’t have to build a pure XK6 machine. The GPU blades can be mixed into existing XE6 configurations, which themselves can be constructed from the older XT6 systems via the insertion of the Gemini interconnect.

Cray’s first XK6 order represents such an upgrade. The Swiss National Supercomputing Centre (CSCS) will use their existing XE6m system as the foundation for a multi-cabinet Cray XK6. The system is to be used to support scientific research in weather forecasting, climatology, chemistry, physics, material sciences, geology, biology, genetics, experimental medicine, astronomy, mathematics and computer sciences.

For the Swiss or anyone else to experience all this GPU goodness, they will have to wait for at least a few months. While the availability of the X2090 coincides with that of the M2090 announced last week, AMD’s Opteron 6200 isn’t expected to hit the streets until Q3. Whether Cray has other dependencies associated with availability, Bolding wouldn’t say.

Cray, of course, could have constructed a GPU machine last year based on the Magny-Cours CPU (Opteron 6100) and X2070 GPU.  HP, IBM, SGI, and practically every other HPC cluster vendor came up with a GPU offering in 2010. But according to Bolding, the XK6 is a more thought-out approach and will be the more productive machine.

“We could have come out with something earlier that wasn’t a complete Cray product, in other words, just a bunch of hardware and a mish-mash of open source software, but we chose not to,” he said. ”Our best mapping of a complete HPC product to the market aligned with the current Cray XK6 timeframe.”

“We’re not first to the party here, but we’re hoping we’re the best dancer,” he added.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This