Storage at Exascale: Some Thoughts from Panasas CTO Garth Gibson

By Nicole Hemsoth

May 25, 2011

Exascale computing is not just about FLOPS. It will also require a new breed of external storage capable of feeding these exaflop beasts. Panasas co-founder and chief technology officer Garth Gibson has some ideas on how this can be accomplished and we asked him to expound on the topic in some detail.

HPCwire: What kind of storage performance will need to be delivered for exascale computing?

Garth Gibson: The top requirement for storage in an exascale supercomputer is the capability to store a checkpoint in approximately 15 minutes or less so as to keep the supercomputer busy with computational tasks most of the time. If you do a checkpoint in 15 minutes, your compute period can be as little as two and a half hours and you still spend only 10 percent of your time checkpointing. The size of the checkpoint data is determined by the memory sizing; something that some experts expect will be approximately 64 petabytes based on the power and capital costs involved. Based on that memory size, we estimate the storage system must be capable of writing at 70 terabytes per second to support a 15 minute checkpoint.

HPCwire: Given the slower performance slope of disk compared to compute, what types of hardware technologies and storage tiering will be required to provide such performance?

Gibson: While we have seen peak rates of throughput on the hundreds of gigabytes per second range today, we have to scale 1000x to get to the required write speed for exascale compute. The challenge with the 70 terabyte-per-second write requirement is that traditional disk drives will not get significantly faster over the coming decade so it will require almost 1000x the number of spindles to sustain this level of write capability.

After all, we can only write as fast as the sum of the individual disk drives. We can look at other technologies like flash storage — such as SSDs — with faster write capabilities. The challenge with this technology, however, is the huge cost delta between flash-based solutions compared to ones based on traditional hard drives. Given that the scratch space will likely be at least 10 times the size of main memory, we are looking at 640 petabytes of scratch storage which translates to over half a billion dollars of cost in flash based storage alone.

The solution is a hybrid approach where the data is initially copied to flash at 70 terabytes per second but the second layer gets 10 times as much time to write from flash to disk, lowering storage bandwidth requirements to 7 terabytes per second, and storage components to only about 100x today’s systems. You get the performance out of flash and the capacity out of spinning disk. In essence, the flash layer is really temporary “cheap memory,” possibly not part of the storage system at all, with little of no use of its non-volatility, and perhaps not using a disk interface like SATA.

HPCwire: What types of software technologies will have to be developed?

Gibson: If we solve the performance/capacity/cost issue with a hybrid model using flash as a temporary memory dump before data is written off to disk, it will require a significant amount of intelligent copy and tiering software to manage the data movement between main memory and the temporary flash memory and from there on to spinning disks. It is not even clear what layers of the application, runtime system, operating system or file system manage this flash memory.

Perhaps more challenging, there will have to be a significant amount of software investment in building reliability into the system. An exascale storage system is going to have two orders of magnitude more components than current systems. With a lot more components comes a significantly higher rate of component failure. This means more RAID reconstructions needing to rebuild bigger drives and more media failures during these reconstructions.

Exascale storage will need higher tolerance for failure as well as the capability for much faster reconstruction, such as is provided by Panasas’ parallel reconstruction, in addition to improved defense against media failures, such as is provided by Panasas’ vertical parity. And more importantly, end to end data integrity checking of stored data, data in transit, data in caches, data pushed through servers and data received at compute nodes, because there is just so much data flowing that detection of the inevitable flipped bit is going to be key. The storage industry is started on this type of high reliability feature development, but exascale computing will need exascale mechanisms years before the broader engineering marketplaces will require it.

HPCwire: How will metadata management need to evolve?

Gibson: At Carnegie Mellon University we have already seen with tests run at Oak Ridge National Laboratory that it doesn’t take a very big configuration before it starts to take thousands of seconds to open all the files, end-to-end. As you scale up the supercomputer size, the increased processor count puts tremendous pressure on your available metadata server concurrency and throughput. Frankly, this is one of the key pressure points we have right now – just simply creating, opening and deleting files can really eat into your available compute cycles. This is the base problem with metadata management.

Exascale is going to mean 100,000 to 250,000 nodes or more. With hundreds to thousands of cores per node and many threads per core — GPUs in the extreme — the number of concurrent threads in exascale computing can easily be estimated in the billions. With this level of concurrent activity, a highly distributed, scalable metadata architecture is a must, with dramatically superior performance over what any vendor offers today. While we at Panasas believe we are in a relatively good starting position, it will nevertheless require a very significant software investment to adequately address this challenge.

HPCwire: Do you believe there is a reasonable roadmap to achieve all this? Do you think the proper investments are being made?

Gibson: I believe that there is a well reasoned and understood roadmap to get from petascale to exascale. However it will take a lot more investment than is currently being put into getting to the roadmap goals. The challenge is the return on investment for vendors. When you consider that the work will take most of the time running up to 2018, when the first exascale systems will be needed, and that there will barely be more than 500 publicly known petascale computers at that time, based on TOP500.org’s historical 7-year lag on the scale of the 500th largest computer.

It is going to be hard to pay for systems development on that scale now, knowing that there is going to be only a few implementations to apportion the cost against this decade and that it will take most of the decade after that for the exascale installed base to grow to 500. We know that exascale features are a viable program at a time far enough down the line to spread the investment cost across many commercial customers such as those in the commercial sector doing work like oil exploration or design modeling.

However, in the mean time, funding a development project like exascale storage systems could sink a small company and it would be highly unattractive on the P&L of a publicly traded company. What made petascale storage systems such as Panasas and Lustre a reality was the investment that the government made with DARPA in the 1990’s and with the DOE Path Forward program this past decade. Similar programs are going to be required to make exascale a reality. The government needs to share in this investment if it wants production quality solutions to be available in the target exascale timeframe.

HPCwire: What do you think is the biggest hurdle for exascale storage?

Gibson: The principal challenge for this type of scale will be the software capability. Software that can manage these levels of concurrency, streaming at such high levels of bandwidth without bottlenecking on metadata throughput, and at the same time ensure high levels of reliability, availability, integrity, and ease-of-use, and in a package that is affordable to operate and maintain is going to require a high level of coordination and cannot come from stringing together a bunch of open-source modules. Simply getting the data path capable of going fast by hooking it together with bailing wire and duct tape is possible but it gives you a false confidence because the capital costs look good and there is a piece of software that runs for awhile and appears to do the right thing.

But in fact, having a piece of software that maintains high availability, doesn’t lose data, and has high integrity and a manageable cost of operation is way harder than many people give it credit for being. You can see this tension today in the Lustre open source file system which seems to require a non-trivial, dedicated staff trained to keep the system up and effective.

HPCwire: Will there be a new parallel file system for exascale?

Gibson: The probability of starting from scratch today and building a brand new production file system deployable in time for 2018 is just about zero. There is a huge investment in software technology required to get to exascale and we cannot get there without significant further investment in the parallel file systems available today. So if we want to hit the timeline for exascale, it is going to have to take investment in new ideas and existing implementations to hit the exascale target.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This