Storage at Exascale: Some Thoughts from Panasas CTO Garth Gibson

By Nicole Hemsoth

May 25, 2011

Exascale computing is not just about FLOPS. It will also require a new breed of external storage capable of feeding these exaflop beasts. Panasas co-founder and chief technology officer Garth Gibson has some ideas on how this can be accomplished and we asked him to expound on the topic in some detail.

HPCwire: What kind of storage performance will need to be delivered for exascale computing?

Garth Gibson: The top requirement for storage in an exascale supercomputer is the capability to store a checkpoint in approximately 15 minutes or less so as to keep the supercomputer busy with computational tasks most of the time. If you do a checkpoint in 15 minutes, your compute period can be as little as two and a half hours and you still spend only 10 percent of your time checkpointing. The size of the checkpoint data is determined by the memory sizing; something that some experts expect will be approximately 64 petabytes based on the power and capital costs involved. Based on that memory size, we estimate the storage system must be capable of writing at 70 terabytes per second to support a 15 minute checkpoint.

HPCwire: Given the slower performance slope of disk compared to compute, what types of hardware technologies and storage tiering will be required to provide such performance?

Gibson: While we have seen peak rates of throughput on the hundreds of gigabytes per second range today, we have to scale 1000x to get to the required write speed for exascale compute. The challenge with the 70 terabyte-per-second write requirement is that traditional disk drives will not get significantly faster over the coming decade so it will require almost 1000x the number of spindles to sustain this level of write capability.

After all, we can only write as fast as the sum of the individual disk drives. We can look at other technologies like flash storage — such as SSDs — with faster write capabilities. The challenge with this technology, however, is the huge cost delta between flash-based solutions compared to ones based on traditional hard drives. Given that the scratch space will likely be at least 10 times the size of main memory, we are looking at 640 petabytes of scratch storage which translates to over half a billion dollars of cost in flash based storage alone.

The solution is a hybrid approach where the data is initially copied to flash at 70 terabytes per second but the second layer gets 10 times as much time to write from flash to disk, lowering storage bandwidth requirements to 7 terabytes per second, and storage components to only about 100x today’s systems. You get the performance out of flash and the capacity out of spinning disk. In essence, the flash layer is really temporary “cheap memory,” possibly not part of the storage system at all, with little of no use of its non-volatility, and perhaps not using a disk interface like SATA.

HPCwire: What types of software technologies will have to be developed?

Gibson: If we solve the performance/capacity/cost issue with a hybrid model using flash as a temporary memory dump before data is written off to disk, it will require a significant amount of intelligent copy and tiering software to manage the data movement between main memory and the temporary flash memory and from there on to spinning disks. It is not even clear what layers of the application, runtime system, operating system or file system manage this flash memory.

Perhaps more challenging, there will have to be a significant amount of software investment in building reliability into the system. An exascale storage system is going to have two orders of magnitude more components than current systems. With a lot more components comes a significantly higher rate of component failure. This means more RAID reconstructions needing to rebuild bigger drives and more media failures during these reconstructions.

Exascale storage will need higher tolerance for failure as well as the capability for much faster reconstruction, such as is provided by Panasas’ parallel reconstruction, in addition to improved defense against media failures, such as is provided by Panasas’ vertical parity. And more importantly, end to end data integrity checking of stored data, data in transit, data in caches, data pushed through servers and data received at compute nodes, because there is just so much data flowing that detection of the inevitable flipped bit is going to be key. The storage industry is started on this type of high reliability feature development, but exascale computing will need exascale mechanisms years before the broader engineering marketplaces will require it.

HPCwire: How will metadata management need to evolve?

Gibson: At Carnegie Mellon University we have already seen with tests run at Oak Ridge National Laboratory that it doesn’t take a very big configuration before it starts to take thousands of seconds to open all the files, end-to-end. As you scale up the supercomputer size, the increased processor count puts tremendous pressure on your available metadata server concurrency and throughput. Frankly, this is one of the key pressure points we have right now – just simply creating, opening and deleting files can really eat into your available compute cycles. This is the base problem with metadata management.

Exascale is going to mean 100,000 to 250,000 nodes or more. With hundreds to thousands of cores per node and many threads per core — GPUs in the extreme — the number of concurrent threads in exascale computing can easily be estimated in the billions. With this level of concurrent activity, a highly distributed, scalable metadata architecture is a must, with dramatically superior performance over what any vendor offers today. While we at Panasas believe we are in a relatively good starting position, it will nevertheless require a very significant software investment to adequately address this challenge.

HPCwire: Do you believe there is a reasonable roadmap to achieve all this? Do you think the proper investments are being made?

Gibson: I believe that there is a well reasoned and understood roadmap to get from petascale to exascale. However it will take a lot more investment than is currently being put into getting to the roadmap goals. The challenge is the return on investment for vendors. When you consider that the work will take most of the time running up to 2018, when the first exascale systems will be needed, and that there will barely be more than 500 publicly known petascale computers at that time, based on TOP500.org’s historical 7-year lag on the scale of the 500th largest computer.

It is going to be hard to pay for systems development on that scale now, knowing that there is going to be only a few implementations to apportion the cost against this decade and that it will take most of the decade after that for the exascale installed base to grow to 500. We know that exascale features are a viable program at a time far enough down the line to spread the investment cost across many commercial customers such as those in the commercial sector doing work like oil exploration or design modeling.

However, in the mean time, funding a development project like exascale storage systems could sink a small company and it would be highly unattractive on the P&L of a publicly traded company. What made petascale storage systems such as Panasas and Lustre a reality was the investment that the government made with DARPA in the 1990’s and with the DOE Path Forward program this past decade. Similar programs are going to be required to make exascale a reality. The government needs to share in this investment if it wants production quality solutions to be available in the target exascale timeframe.

HPCwire: What do you think is the biggest hurdle for exascale storage?

Gibson: The principal challenge for this type of scale will be the software capability. Software that can manage these levels of concurrency, streaming at such high levels of bandwidth without bottlenecking on metadata throughput, and at the same time ensure high levels of reliability, availability, integrity, and ease-of-use, and in a package that is affordable to operate and maintain is going to require a high level of coordination and cannot come from stringing together a bunch of open-source modules. Simply getting the data path capable of going fast by hooking it together with bailing wire and duct tape is possible but it gives you a false confidence because the capital costs look good and there is a piece of software that runs for awhile and appears to do the right thing.

But in fact, having a piece of software that maintains high availability, doesn’t lose data, and has high integrity and a manageable cost of operation is way harder than many people give it credit for being. You can see this tension today in the Lustre open source file system which seems to require a non-trivial, dedicated staff trained to keep the system up and effective.

HPCwire: Will there be a new parallel file system for exascale?

Gibson: The probability of starting from scratch today and building a brand new production file system deployable in time for 2018 is just about zero. There is a huge investment in software technology required to get to exascale and we cannot get there without significant further investment in the parallel file systems available today. So if we want to hit the timeline for exascale, it is going to have to take investment in new ideas and existing implementations to hit the exascale target.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This