Storage at Exascale: Some Thoughts from Panasas CTO Garth Gibson

By Nicole Hemsoth

May 25, 2011

Exascale computing is not just about FLOPS. It will also require a new breed of external storage capable of feeding these exaflop beasts. Panasas co-founder and chief technology officer Garth Gibson has some ideas on how this can be accomplished and we asked him to expound on the topic in some detail.

HPCwire: What kind of storage performance will need to be delivered for exascale computing?

Garth Gibson: The top requirement for storage in an exascale supercomputer is the capability to store a checkpoint in approximately 15 minutes or less so as to keep the supercomputer busy with computational tasks most of the time. If you do a checkpoint in 15 minutes, your compute period can be as little as two and a half hours and you still spend only 10 percent of your time checkpointing. The size of the checkpoint data is determined by the memory sizing; something that some experts expect will be approximately 64 petabytes based on the power and capital costs involved. Based on that memory size, we estimate the storage system must be capable of writing at 70 terabytes per second to support a 15 minute checkpoint.

HPCwire: Given the slower performance slope of disk compared to compute, what types of hardware technologies and storage tiering will be required to provide such performance?

Gibson: While we have seen peak rates of throughput on the hundreds of gigabytes per second range today, we have to scale 1000x to get to the required write speed for exascale compute. The challenge with the 70 terabyte-per-second write requirement is that traditional disk drives will not get significantly faster over the coming decade so it will require almost 1000x the number of spindles to sustain this level of write capability.

After all, we can only write as fast as the sum of the individual disk drives. We can look at other technologies like flash storage — such as SSDs — with faster write capabilities. The challenge with this technology, however, is the huge cost delta between flash-based solutions compared to ones based on traditional hard drives. Given that the scratch space will likely be at least 10 times the size of main memory, we are looking at 640 petabytes of scratch storage which translates to over half a billion dollars of cost in flash based storage alone.

The solution is a hybrid approach where the data is initially copied to flash at 70 terabytes per second but the second layer gets 10 times as much time to write from flash to disk, lowering storage bandwidth requirements to 7 terabytes per second, and storage components to only about 100x today’s systems. You get the performance out of flash and the capacity out of spinning disk. In essence, the flash layer is really temporary “cheap memory,” possibly not part of the storage system at all, with little of no use of its non-volatility, and perhaps not using a disk interface like SATA.

HPCwire: What types of software technologies will have to be developed?

Gibson: If we solve the performance/capacity/cost issue with a hybrid model using flash as a temporary memory dump before data is written off to disk, it will require a significant amount of intelligent copy and tiering software to manage the data movement between main memory and the temporary flash memory and from there on to spinning disks. It is not even clear what layers of the application, runtime system, operating system or file system manage this flash memory.

Perhaps more challenging, there will have to be a significant amount of software investment in building reliability into the system. An exascale storage system is going to have two orders of magnitude more components than current systems. With a lot more components comes a significantly higher rate of component failure. This means more RAID reconstructions needing to rebuild bigger drives and more media failures during these reconstructions.

Exascale storage will need higher tolerance for failure as well as the capability for much faster reconstruction, such as is provided by Panasas’ parallel reconstruction, in addition to improved defense against media failures, such as is provided by Panasas’ vertical parity. And more importantly, end to end data integrity checking of stored data, data in transit, data in caches, data pushed through servers and data received at compute nodes, because there is just so much data flowing that detection of the inevitable flipped bit is going to be key. The storage industry is started on this type of high reliability feature development, but exascale computing will need exascale mechanisms years before the broader engineering marketplaces will require it.

HPCwire: How will metadata management need to evolve?

Gibson: At Carnegie Mellon University we have already seen with tests run at Oak Ridge National Laboratory that it doesn’t take a very big configuration before it starts to take thousands of seconds to open all the files, end-to-end. As you scale up the supercomputer size, the increased processor count puts tremendous pressure on your available metadata server concurrency and throughput. Frankly, this is one of the key pressure points we have right now – just simply creating, opening and deleting files can really eat into your available compute cycles. This is the base problem with metadata management.

Exascale is going to mean 100,000 to 250,000 nodes or more. With hundreds to thousands of cores per node and many threads per core — GPUs in the extreme — the number of concurrent threads in exascale computing can easily be estimated in the billions. With this level of concurrent activity, a highly distributed, scalable metadata architecture is a must, with dramatically superior performance over what any vendor offers today. While we at Panasas believe we are in a relatively good starting position, it will nevertheless require a very significant software investment to adequately address this challenge.

HPCwire: Do you believe there is a reasonable roadmap to achieve all this? Do you think the proper investments are being made?

Gibson: I believe that there is a well reasoned and understood roadmap to get from petascale to exascale. However it will take a lot more investment than is currently being put into getting to the roadmap goals. The challenge is the return on investment for vendors. When you consider that the work will take most of the time running up to 2018, when the first exascale systems will be needed, and that there will barely be more than 500 publicly known petascale computers at that time, based on TOP500.org’s historical 7-year lag on the scale of the 500th largest computer.

It is going to be hard to pay for systems development on that scale now, knowing that there is going to be only a few implementations to apportion the cost against this decade and that it will take most of the decade after that for the exascale installed base to grow to 500. We know that exascale features are a viable program at a time far enough down the line to spread the investment cost across many commercial customers such as those in the commercial sector doing work like oil exploration or design modeling.

However, in the mean time, funding a development project like exascale storage systems could sink a small company and it would be highly unattractive on the P&L of a publicly traded company. What made petascale storage systems such as Panasas and Lustre a reality was the investment that the government made with DARPA in the 1990’s and with the DOE Path Forward program this past decade. Similar programs are going to be required to make exascale a reality. The government needs to share in this investment if it wants production quality solutions to be available in the target exascale timeframe.

HPCwire: What do you think is the biggest hurdle for exascale storage?

Gibson: The principal challenge for this type of scale will be the software capability. Software that can manage these levels of concurrency, streaming at such high levels of bandwidth without bottlenecking on metadata throughput, and at the same time ensure high levels of reliability, availability, integrity, and ease-of-use, and in a package that is affordable to operate and maintain is going to require a high level of coordination and cannot come from stringing together a bunch of open-source modules. Simply getting the data path capable of going fast by hooking it together with bailing wire and duct tape is possible but it gives you a false confidence because the capital costs look good and there is a piece of software that runs for awhile and appears to do the right thing.

But in fact, having a piece of software that maintains high availability, doesn’t lose data, and has high integrity and a manageable cost of operation is way harder than many people give it credit for being. You can see this tension today in the Lustre open source file system which seems to require a non-trivial, dedicated staff trained to keep the system up and effective.

HPCwire: Will there be a new parallel file system for exascale?

Gibson: The probability of starting from scratch today and building a brand new production file system deployable in time for 2018 is just about zero. There is a huge investment in software technology required to get to exascale and we cannot get there without significant further investment in the parallel file systems available today. So if we want to hit the timeline for exascale, it is going to have to take investment in new ideas and existing implementations to hit the exascale target.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Alibaba Highlights COVID-19 Research Enabled by Its Cloud HPC

April 8, 2020

Many supercomputer centers are fast-tracking COVID-19-related proposals and prioritizing COVID-19-related jobs on their systems. For the researchers whose access to these systems is limited (or for whom time is too limit Read more…

By Oliver Peckham

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing ( Read more…

By John Russell

Ethernet Technology Consortium Launches 800 Gigabit Ethernet Specification

April 7, 2020

The newly rebranded Ethernet Technology Consortium (ETC), formerly known as the 25 Gigabit Ethernet Consortium, announced a new 800 Gigabit Ethernet specification and an expanded scope aimed at meeting the needs of perfo Read more…

By Tiffany Trader

Spanish Researchers Introduce HPC-Ready COVID-19 Spread Simulator

April 7, 2020

With governments in a mad scramble to identify the policies most likely to curb the spread of the pandemic without unnecessarily crippling the global economy, researchers are turning to AI and high-performance computing Read more…

By Oliver Peckham

Stony Brook Researchers to Run COVID-19 Simulations on Supercomputers

April 6, 2020

A wide range of supercomputers are crunching the infamous “spike” protein of the novel coronavirus, from Summit more than a month ago to [email protected] to a Russian cluster just a week ago. Read more…

By Staff report

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

What’s New in Computing vs. COVID-19: Fast-Tracked Research, Susceptibility Study, Antibodies & More

April 6, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems Read more…

By John Russell

Ethernet Technology Consortium Launches 800 Gigabit Ethernet Specification

April 7, 2020

The newly rebranded Ethernet Technology Consortium (ETC), formerly known as the 25 Gigabit Ethernet Consortium, announced a new 800 Gigabit Ethernet specificati Read more…

By Tiffany Trader

ECP Milestone Report Details Progress and Directions

April 1, 2020

The Exascale Computing Project (ECP) milestone report issued last week presents a good snapshot of progress in preparing applications for exascale computing. Th Read more…

By John Russell

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

LLNL Leverages Supercomputing to Identify COVID-19 Antibody Candidates

March 30, 2020

As COVID-19 sweeps the globe to devastating effect, supercomputers around the world are spinning up to fight back by working on diagnosis, epidemiology, treatme Read more…

By Staff report

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected]ome, a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

CINECA’s Carlo Cavazzoni Describes the Supercomputing Battle Against COVID-19

March 17, 2020

The latest episode of the This Week in HPC podcast features Carlo Cavazzoni, a senior staff member at CINECA, one of the leading supercomputing organizations in Europe. Intersect360 Research's Addison Snell spoke to Cavazzoni to discuss both CINECA's work using supercomputing to combat COVID-19 and Cavazzoni's personal experience living near the epicenter... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This