Storage at Exascale: Some Thoughts from Panasas CTO Garth Gibson

By Nicole Hemsoth

May 25, 2011

Exascale computing is not just about FLOPS. It will also require a new breed of external storage capable of feeding these exaflop beasts. Panasas co-founder and chief technology officer Garth Gibson has some ideas on how this can be accomplished and we asked him to expound on the topic in some detail.

HPCwire: What kind of storage performance will need to be delivered for exascale computing?

Garth Gibson: The top requirement for storage in an exascale supercomputer is the capability to store a checkpoint in approximately 15 minutes or less so as to keep the supercomputer busy with computational tasks most of the time. If you do a checkpoint in 15 minutes, your compute period can be as little as two and a half hours and you still spend only 10 percent of your time checkpointing. The size of the checkpoint data is determined by the memory sizing; something that some experts expect will be approximately 64 petabytes based on the power and capital costs involved. Based on that memory size, we estimate the storage system must be capable of writing at 70 terabytes per second to support a 15 minute checkpoint.

HPCwire: Given the slower performance slope of disk compared to compute, what types of hardware technologies and storage tiering will be required to provide such performance?

Gibson: While we have seen peak rates of throughput on the hundreds of gigabytes per second range today, we have to scale 1000x to get to the required write speed for exascale compute. The challenge with the 70 terabyte-per-second write requirement is that traditional disk drives will not get significantly faster over the coming decade so it will require almost 1000x the number of spindles to sustain this level of write capability.

After all, we can only write as fast as the sum of the individual disk drives. We can look at other technologies like flash storage — such as SSDs — with faster write capabilities. The challenge with this technology, however, is the huge cost delta between flash-based solutions compared to ones based on traditional hard drives. Given that the scratch space will likely be at least 10 times the size of main memory, we are looking at 640 petabytes of scratch storage which translates to over half a billion dollars of cost in flash based storage alone.

The solution is a hybrid approach where the data is initially copied to flash at 70 terabytes per second but the second layer gets 10 times as much time to write from flash to disk, lowering storage bandwidth requirements to 7 terabytes per second, and storage components to only about 100x today’s systems. You get the performance out of flash and the capacity out of spinning disk. In essence, the flash layer is really temporary “cheap memory,” possibly not part of the storage system at all, with little of no use of its non-volatility, and perhaps not using a disk interface like SATA.

HPCwire: What types of software technologies will have to be developed?

Gibson: If we solve the performance/capacity/cost issue with a hybrid model using flash as a temporary memory dump before data is written off to disk, it will require a significant amount of intelligent copy and tiering software to manage the data movement between main memory and the temporary flash memory and from there on to spinning disks. It is not even clear what layers of the application, runtime system, operating system or file system manage this flash memory.

Perhaps more challenging, there will have to be a significant amount of software investment in building reliability into the system. An exascale storage system is going to have two orders of magnitude more components than current systems. With a lot more components comes a significantly higher rate of component failure. This means more RAID reconstructions needing to rebuild bigger drives and more media failures during these reconstructions.

Exascale storage will need higher tolerance for failure as well as the capability for much faster reconstruction, such as is provided by Panasas’ parallel reconstruction, in addition to improved defense against media failures, such as is provided by Panasas’ vertical parity. And more importantly, end to end data integrity checking of stored data, data in transit, data in caches, data pushed through servers and data received at compute nodes, because there is just so much data flowing that detection of the inevitable flipped bit is going to be key. The storage industry is started on this type of high reliability feature development, but exascale computing will need exascale mechanisms years before the broader engineering marketplaces will require it.

HPCwire: How will metadata management need to evolve?

Gibson: At Carnegie Mellon University we have already seen with tests run at Oak Ridge National Laboratory that it doesn’t take a very big configuration before it starts to take thousands of seconds to open all the files, end-to-end. As you scale up the supercomputer size, the increased processor count puts tremendous pressure on your available metadata server concurrency and throughput. Frankly, this is one of the key pressure points we have right now – just simply creating, opening and deleting files can really eat into your available compute cycles. This is the base problem with metadata management.

Exascale is going to mean 100,000 to 250,000 nodes or more. With hundreds to thousands of cores per node and many threads per core — GPUs in the extreme — the number of concurrent threads in exascale computing can easily be estimated in the billions. With this level of concurrent activity, a highly distributed, scalable metadata architecture is a must, with dramatically superior performance over what any vendor offers today. While we at Panasas believe we are in a relatively good starting position, it will nevertheless require a very significant software investment to adequately address this challenge.

HPCwire: Do you believe there is a reasonable roadmap to achieve all this? Do you think the proper investments are being made?

Gibson: I believe that there is a well reasoned and understood roadmap to get from petascale to exascale. However it will take a lot more investment than is currently being put into getting to the roadmap goals. The challenge is the return on investment for vendors. When you consider that the work will take most of the time running up to 2018, when the first exascale systems will be needed, and that there will barely be more than 500 publicly known petascale computers at that time, based on TOP500.org’s historical 7-year lag on the scale of the 500th largest computer.

It is going to be hard to pay for systems development on that scale now, knowing that there is going to be only a few implementations to apportion the cost against this decade and that it will take most of the decade after that for the exascale installed base to grow to 500. We know that exascale features are a viable program at a time far enough down the line to spread the investment cost across many commercial customers such as those in the commercial sector doing work like oil exploration or design modeling.

However, in the mean time, funding a development project like exascale storage systems could sink a small company and it would be highly unattractive on the P&L of a publicly traded company. What made petascale storage systems such as Panasas and Lustre a reality was the investment that the government made with DARPA in the 1990’s and with the DOE Path Forward program this past decade. Similar programs are going to be required to make exascale a reality. The government needs to share in this investment if it wants production quality solutions to be available in the target exascale timeframe.

HPCwire: What do you think is the biggest hurdle for exascale storage?

Gibson: The principal challenge for this type of scale will be the software capability. Software that can manage these levels of concurrency, streaming at such high levels of bandwidth without bottlenecking on metadata throughput, and at the same time ensure high levels of reliability, availability, integrity, and ease-of-use, and in a package that is affordable to operate and maintain is going to require a high level of coordination and cannot come from stringing together a bunch of open-source modules. Simply getting the data path capable of going fast by hooking it together with bailing wire and duct tape is possible but it gives you a false confidence because the capital costs look good and there is a piece of software that runs for awhile and appears to do the right thing.

But in fact, having a piece of software that maintains high availability, doesn’t lose data, and has high integrity and a manageable cost of operation is way harder than many people give it credit for being. You can see this tension today in the Lustre open source file system which seems to require a non-trivial, dedicated staff trained to keep the system up and effective.

HPCwire: Will there be a new parallel file system for exascale?

Gibson: The probability of starting from scratch today and building a brand new production file system deployable in time for 2018 is just about zero. There is a huge investment in software technology required to get to exascale and we cannot get there without significant further investment in the parallel file systems available today. So if we want to hit the timeline for exascale, it is going to have to take investment in new ideas and existing implementations to hit the exascale target.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, some of the apps, like SWIFT and OpenFOAM, really pushed the st Read more…

By Dan Olds

Portugal Launches Its First Supercomputer

July 12, 2019

Portugal has officially inaugurated its first-ever supercomputer. The unassumingly named “Bob” supercomputer is housed in the Minho Advanced Computer Center (MACC) at the University of Minho.  Bob was announced i Read more…

By Oliver Peckham

What’s New in HPC Research: Traffic Simulation, Performance Variations, Scheduling & More

July 11, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

How AI Powers Up Data Management and Analytics

Companies are making more decisions based on data. However, the ability to intelligently process the growing volume of data is a bottleneck to extracting actionable insights. Read more…

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered servers for AI workloads, has expanded the program beyond th Read more…

By Doug Black

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

ISC19 Cluster Competition: HPCC Deep Dive

July 7, 2019

The biggest benchmark the student warriors tackled during the ISC19 Student Cluster Competition was the colossal HPC Challenge. This is a collection of benchmar Read more…

By Dan Olds

OLCF Bids Farewell to Its Titan Supercomputer

July 4, 2019

After seven years of faithful service, and a long reign as the United States' fastest supercomputer, the Cray XK7-based Titan supercomputer at the Oak Ridge Lea Read more…

By Staff report

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This