A Tale of Two GPU Computing Models

By Michael Feldman

May 26, 2011

There was plenty of GPU computing in the HPC news stream this week, but I’m going to focus on two announcements, since they’re somewhat at odds with each other — but not really.

The first is Cray’s big announcement of its Tesla-equipped XK6 super. The company has been talking up this system up for awhile and finally got the chance to spill the details on it thanks to NVIDIA’s launch last week of the second-generation Fermi GPU technology.

The system is not your garden-variety GPU cluster, though. The XK6 blade is a variant of the XE6 and like its CPU-only sibling is designed to scale well into multi-petaflops territory. A single rack will deliver about 70 teraflops. The blade will actually be using the X2090, a compact form factor variant of the new M2090 part, but the innards are supposedly identical.

Cray, though, is pointing to its software environment as the technology that really makes the XK6 something special. Although NVIDIA’s CUDA SDK comes standard with each system, Cray is also developing its own GPU compiler for C and Fortran, based on OpenMP extensions for accelerators. Their compiler is still in a pre-production state, but Cray will be handing it out to selected customers to kick the tires.

The idea is to provide programmers with a standard directives-based language environment for GPU computing. Since the developer need only insert directives to tell the compiler which pieces need to be GPU-ified, it’s a lot easier to convert existing CPU codes, compared to doing a CUDA port. The resulting directive-enhanced source can then be ported to other accelerator platforms, assuming they support the OpenMP accelerator extensions too. Or the directives can be stripped out if a standard CPU platform is all you have.

Cray is also supporting PGI’s GPU-capable compiler, which is directives-based as well, but it’s not an open standard like OpenMP. PGI and CAPS enterprise (which has its own HMPP directives for GPU computing) could of course adopt the OpenMP accelerator directives, and undoubtedly would do so if that version became the choice of developers. Given that OpenMP has a very strong following in the HPC community, it wouldn’t surprise me if developers opted for this particular solution.

Also, since both PGI and CAPS are on the OpenMP board, I’d venture to say that there will be a meeting of the minds over accelerator directives in the not-too-distant future. By the way, Intel is on the board too, so it’s conceivable that OpenMP acceleration will be supported for the upcoming Knights Ferry MIC processor as well.

The only caveat to a directives-based approach to programming GPU is that of performance. Something like CUDA or OpenCL can get much closer to the silicon and thus offer better performance if you know what you’re doing. The problem is a lot of developers don’t know what they’re doing — as a former software engineer, I say this without blushing — and in any case would prefer not to have to worry about the nitty-gritty details of GPU programming. Also, for the reasons stated above, there are significant advantages to building GPU codes in a high-level, hardware-independent language environment.

Cray is already tuning their OpenMP-based GPU compiler for performance. With their knowledge of all things vector, I expect they’ll eventually get to a happy place performance-wise. Certainly if such a programming model can shave a few months or even a few weeks off of development time, you have a lot more cycles to play with simply because you have a working program in hand.

The second high-profile GPU news item this week involved a successful GPU port of a machine learning algorithm by Pittsburgh Supercomputing Center (PSC) and HP Labs. In this case what I mean by successful is that the researchers achieved a 10X speedup of the algorithm using CUDA and an NVIDIA GPU-based system, compared to the equivalent code targeted for a CPU cluster. The system encompassed three nodes, with three GPUs and two CPUs per node. MPI was used for node-to-node chatter.

The algorithm in question, called k-means clustering, is used in machine learning to uncover patterns or association within large datasets. In this case, they used Google’s “Books N-gram” dataset to cluster all five-word sets of the one thousand most commonly used words occurring in all books published in 2005. With their GPU implementation, the researchers were able to cluster the entire dataset (15 million data points and 1000 dimensions) in less than nine seconds.

While that particular application might not be the most useful one ever invented, machine learning has a big place in data analytics generally. That includes a lot of HPC-type informatics work — genomics, proteomics, etc. There’s even the equivalent in the humanities, called culturomics, which is essentially the analysis of datasets having to do with human cultures. Basically any application that does data correlations across large datasets can make use of this method.

The CUDA version of this machine learning algorithm not only out-performed the CPU implementation (straight C) by a factor of 10, it was 1,000 times faster than an unspecified high-level language implementation used in machine learning research.

Ren Wu, principal investigator of the CUDA Research Center at HP Labs, developed the k-means clustering code for GPUs used by PSC. In the announcement he had plenty of nice things to say about CUDA:

“I think that the CUDA programming model is a very nice framework, well balanced on abstraction and expressing power, easy to learn but with enough control for advanced algorithm designers, and supported by hardware with exceptional performance (compared to other alternatives). The key for any high-performance algorithm on modern multi/many-core architecture is to minimize the data movement and to optimize against memory hierarchy. Keeping this in mind, CUDA is as easy, if not easier, than any other alternatives.”

Whether Wu could have extracted similar performance from an OpenMP accelerator programming implementation or something similar is questionable. Clearly there are going to be situations where using CUDA (or OpenCL) is warranted. This will be especially true for library routines/algorithms that are used across a wide variety of applications, and whose speed is critical to the application’s performance. For data parallel algorithms that are local to specific applications, a more high level approach may be the way to go.

We’ve certainly been here before with assembly code and high-level languages. Both have established their place in software development. Similarly we’re going to see high-level and low-level GPU programming frameworks moving forward together and it’s going to be up to the programmer to know when to apply each.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place... Read more…

By Oliver Peckham

Xilinx Says Its New FPGA is World’s Largest

August 21, 2019

In this age of exploding “technology disaggregation” – in which the Big Bang emanating from the Intel x86 CPU has produced significant advances in CPU chips and a raft of alternative, accelerated architectures... Read more…

By Doug Black

Supercomputers Generate Universes to Illuminate Galactic Formation

August 20, 2019

With advanced imaging and satellite technologies, it’s easier than ever to see a galaxy – but understanding how they form (a process that can take billions of years) is a different story. Now, a team of researchers f Read more…

By Oliver Peckham

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Singularity Moves Up the Container Value Chain

August 20, 2019

The enterprise version of the Singularity HPC container platform released this week by Sylabs is designed to allow users to create, secure and share the high-end containers in self-hosted production deployments. The e Read more…

By George Leopold

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place... Read more…

By Oliver Peckham

IBM Deepens Plunge into Open Source; OpenPOWER to Join Linux Foundation

August 20, 2019

IBM today announced it was contributing the instruction set (ISA) for its Power microprocessor and the designs for the Open Coherent Accelerator Processor Inter Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This