A Tale of Two GPU Computing Models

By Michael Feldman

May 26, 2011

There was plenty of GPU computing in the HPC news stream this week, but I’m going to focus on two announcements, since they’re somewhat at odds with each other — but not really.

The first is Cray’s big announcement of its Tesla-equipped XK6 super. The company has been talking up this system up for awhile and finally got the chance to spill the details on it thanks to NVIDIA’s launch last week of the second-generation Fermi GPU technology.

The system is not your garden-variety GPU cluster, though. The XK6 blade is a variant of the XE6 and like its CPU-only sibling is designed to scale well into multi-petaflops territory. A single rack will deliver about 70 teraflops. The blade will actually be using the X2090, a compact form factor variant of the new M2090 part, but the innards are supposedly identical.

Cray, though, is pointing to its software environment as the technology that really makes the XK6 something special. Although NVIDIA’s CUDA SDK comes standard with each system, Cray is also developing its own GPU compiler for C and Fortran, based on OpenMP extensions for accelerators. Their compiler is still in a pre-production state, but Cray will be handing it out to selected customers to kick the tires.

The idea is to provide programmers with a standard directives-based language environment for GPU computing. Since the developer need only insert directives to tell the compiler which pieces need to be GPU-ified, it’s a lot easier to convert existing CPU codes, compared to doing a CUDA port. The resulting directive-enhanced source can then be ported to other accelerator platforms, assuming they support the OpenMP accelerator extensions too. Or the directives can be stripped out if a standard CPU platform is all you have.

Cray is also supporting PGI’s GPU-capable compiler, which is directives-based as well, but it’s not an open standard like OpenMP. PGI and CAPS enterprise (which has its own HMPP directives for GPU computing) could of course adopt the OpenMP accelerator directives, and undoubtedly would do so if that version became the choice of developers. Given that OpenMP has a very strong following in the HPC community, it wouldn’t surprise me if developers opted for this particular solution.

Also, since both PGI and CAPS are on the OpenMP board, I’d venture to say that there will be a meeting of the minds over accelerator directives in the not-too-distant future. By the way, Intel is on the board too, so it’s conceivable that OpenMP acceleration will be supported for the upcoming Knights Ferry MIC processor as well.

The only caveat to a directives-based approach to programming GPU is that of performance. Something like CUDA or OpenCL can get much closer to the silicon and thus offer better performance if you know what you’re doing. The problem is a lot of developers don’t know what they’re doing — as a former software engineer, I say this without blushing — and in any case would prefer not to have to worry about the nitty-gritty details of GPU programming. Also, for the reasons stated above, there are significant advantages to building GPU codes in a high-level, hardware-independent language environment.

Cray is already tuning their OpenMP-based GPU compiler for performance. With their knowledge of all things vector, I expect they’ll eventually get to a happy place performance-wise. Certainly if such a programming model can shave a few months or even a few weeks off of development time, you have a lot more cycles to play with simply because you have a working program in hand.

The second high-profile GPU news item this week involved a successful GPU port of a machine learning algorithm by Pittsburgh Supercomputing Center (PSC) and HP Labs. In this case what I mean by successful is that the researchers achieved a 10X speedup of the algorithm using CUDA and an NVIDIA GPU-based system, compared to the equivalent code targeted for a CPU cluster. The system encompassed three nodes, with three GPUs and two CPUs per node. MPI was used for node-to-node chatter.

The algorithm in question, called k-means clustering, is used in machine learning to uncover patterns or association within large datasets. In this case, they used Google’s “Books N-gram” dataset to cluster all five-word sets of the one thousand most commonly used words occurring in all books published in 2005. With their GPU implementation, the researchers were able to cluster the entire dataset (15 million data points and 1000 dimensions) in less than nine seconds.

While that particular application might not be the most useful one ever invented, machine learning has a big place in data analytics generally. That includes a lot of HPC-type informatics work — genomics, proteomics, etc. There’s even the equivalent in the humanities, called culturomics, which is essentially the analysis of datasets having to do with human cultures. Basically any application that does data correlations across large datasets can make use of this method.

The CUDA version of this machine learning algorithm not only out-performed the CPU implementation (straight C) by a factor of 10, it was 1,000 times faster than an unspecified high-level language implementation used in machine learning research.

Ren Wu, principal investigator of the CUDA Research Center at HP Labs, developed the k-means clustering code for GPUs used by PSC. In the announcement he had plenty of nice things to say about CUDA:

“I think that the CUDA programming model is a very nice framework, well balanced on abstraction and expressing power, easy to learn but with enough control for advanced algorithm designers, and supported by hardware with exceptional performance (compared to other alternatives). The key for any high-performance algorithm on modern multi/many-core architecture is to minimize the data movement and to optimize against memory hierarchy. Keeping this in mind, CUDA is as easy, if not easier, than any other alternatives.”

Whether Wu could have extracted similar performance from an OpenMP accelerator programming implementation or something similar is questionable. Clearly there are going to be situations where using CUDA (or OpenCL) is warranted. This will be especially true for library routines/algorithms that are used across a wide variety of applications, and whose speed is critical to the application’s performance. For data parallel algorithms that are local to specific applications, a more high level approach may be the way to go.

We’ve certainly been here before with assembly code and high-level languages. Both have established their place in software development. Similarly we’re going to see high-level and low-level GPU programming frameworks moving forward together and it’s going to be up to the programmer to know when to apply each.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This