A Tale of Two GPU Computing Models

By Michael Feldman

May 26, 2011

There was plenty of GPU computing in the HPC news stream this week, but I’m going to focus on two announcements, since they’re somewhat at odds with each other — but not really.

The first is Cray’s big announcement of its Tesla-equipped XK6 super. The company has been talking up this system up for awhile and finally got the chance to spill the details on it thanks to NVIDIA’s launch last week of the second-generation Fermi GPU technology.

The system is not your garden-variety GPU cluster, though. The XK6 blade is a variant of the XE6 and like its CPU-only sibling is designed to scale well into multi-petaflops territory. A single rack will deliver about 70 teraflops. The blade will actually be using the X2090, a compact form factor variant of the new M2090 part, but the innards are supposedly identical.

Cray, though, is pointing to its software environment as the technology that really makes the XK6 something special. Although NVIDIA’s CUDA SDK comes standard with each system, Cray is also developing its own GPU compiler for C and Fortran, based on OpenMP extensions for accelerators. Their compiler is still in a pre-production state, but Cray will be handing it out to selected customers to kick the tires.

The idea is to provide programmers with a standard directives-based language environment for GPU computing. Since the developer need only insert directives to tell the compiler which pieces need to be GPU-ified, it’s a lot easier to convert existing CPU codes, compared to doing a CUDA port. The resulting directive-enhanced source can then be ported to other accelerator platforms, assuming they support the OpenMP accelerator extensions too. Or the directives can be stripped out if a standard CPU platform is all you have.

Cray is also supporting PGI’s GPU-capable compiler, which is directives-based as well, but it’s not an open standard like OpenMP. PGI and CAPS enterprise (which has its own HMPP directives for GPU computing) could of course adopt the OpenMP accelerator directives, and undoubtedly would do so if that version became the choice of developers. Given that OpenMP has a very strong following in the HPC community, it wouldn’t surprise me if developers opted for this particular solution.

Also, since both PGI and CAPS are on the OpenMP board, I’d venture to say that there will be a meeting of the minds over accelerator directives in the not-too-distant future. By the way, Intel is on the board too, so it’s conceivable that OpenMP acceleration will be supported for the upcoming Knights Ferry MIC processor as well.

The only caveat to a directives-based approach to programming GPU is that of performance. Something like CUDA or OpenCL can get much closer to the silicon and thus offer better performance if you know what you’re doing. The problem is a lot of developers don’t know what they’re doing — as a former software engineer, I say this without blushing — and in any case would prefer not to have to worry about the nitty-gritty details of GPU programming. Also, for the reasons stated above, there are significant advantages to building GPU codes in a high-level, hardware-independent language environment.

Cray is already tuning their OpenMP-based GPU compiler for performance. With their knowledge of all things vector, I expect they’ll eventually get to a happy place performance-wise. Certainly if such a programming model can shave a few months or even a few weeks off of development time, you have a lot more cycles to play with simply because you have a working program in hand.

The second high-profile GPU news item this week involved a successful GPU port of a machine learning algorithm by Pittsburgh Supercomputing Center (PSC) and HP Labs. In this case what I mean by successful is that the researchers achieved a 10X speedup of the algorithm using CUDA and an NVIDIA GPU-based system, compared to the equivalent code targeted for a CPU cluster. The system encompassed three nodes, with three GPUs and two CPUs per node. MPI was used for node-to-node chatter.

The algorithm in question, called k-means clustering, is used in machine learning to uncover patterns or association within large datasets. In this case, they used Google’s “Books N-gram” dataset to cluster all five-word sets of the one thousand most commonly used words occurring in all books published in 2005. With their GPU implementation, the researchers were able to cluster the entire dataset (15 million data points and 1000 dimensions) in less than nine seconds.

While that particular application might not be the most useful one ever invented, machine learning has a big place in data analytics generally. That includes a lot of HPC-type informatics work — genomics, proteomics, etc. There’s even the equivalent in the humanities, called culturomics, which is essentially the analysis of datasets having to do with human cultures. Basically any application that does data correlations across large datasets can make use of this method.

The CUDA version of this machine learning algorithm not only out-performed the CPU implementation (straight C) by a factor of 10, it was 1,000 times faster than an unspecified high-level language implementation used in machine learning research.

Ren Wu, principal investigator of the CUDA Research Center at HP Labs, developed the k-means clustering code for GPUs used by PSC. In the announcement he had plenty of nice things to say about CUDA:

“I think that the CUDA programming model is a very nice framework, well balanced on abstraction and expressing power, easy to learn but with enough control for advanced algorithm designers, and supported by hardware with exceptional performance (compared to other alternatives). The key for any high-performance algorithm on modern multi/many-core architecture is to minimize the data movement and to optimize against memory hierarchy. Keeping this in mind, CUDA is as easy, if not easier, than any other alternatives.”

Whether Wu could have extracted similar performance from an OpenMP accelerator programming implementation or something similar is questionable. Clearly there are going to be situations where using CUDA (or OpenCL) is warranted. This will be especially true for library routines/algorithms that are used across a wide variety of applications, and whose speed is critical to the application’s performance. For data parallel algorithms that are local to specific applications, a more high level approach may be the way to go.

We’ve certainly been here before with assembly code and high-level languages. Both have established their place in software development. Similarly we’re going to see high-level and low-level GPU programming frameworks moving forward together and it’s going to be up to the programmer to know when to apply each.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: September (Part 1)

September 18, 2018

In this new bimonthly feature, HPCwire will highlight newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Check back every Read more…

By Oliver Peckham

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and development. Among other things it would establish a National Quantu Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU--and a refresh of its inference server software packaged as Read more…

By George Leopold

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

A Crystal Ball for HPC

People are notoriously bad at predicting the future.  This very much includes experts. In the Forbes article “Why Most Predictions Are So Bad” Philip Tetlock discusses the largest and best-known test of the accuracy of expert predictions which show that any experts would do better if they make random guesses. Read more…

NSF Highlights Expanded Efforts for Broadening Participation in Computing

September 13, 2018

Today, the Directorate of Computer and Information Science and Engineering (CISE) of the NSF released a letter highlighting the expansion of its broadening participation in computing efforts. The letter was penned by Jam Read more…

By Staff

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

No Go for GloFo at 7nm; and the Fujitsu A64FX post-K CPU

September 5, 2018

It’s been a news worthy couple of weeks in the semiconductor and HPC industry. There were several HPC relevant disclosures at Hot Chips 2018 to whet appetites Read more…

By Dairsie Latimer

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This