A Tale of Two GPU Computing Models

By Michael Feldman

May 26, 2011

There was plenty of GPU computing in the HPC news stream this week, but I’m going to focus on two announcements, since they’re somewhat at odds with each other — but not really.

The first is Cray’s big announcement of its Tesla-equipped XK6 super. The company has been talking up this system up for awhile and finally got the chance to spill the details on it thanks to NVIDIA’s launch last week of the second-generation Fermi GPU technology.

The system is not your garden-variety GPU cluster, though. The XK6 blade is a variant of the XE6 and like its CPU-only sibling is designed to scale well into multi-petaflops territory. A single rack will deliver about 70 teraflops. The blade will actually be using the X2090, a compact form factor variant of the new M2090 part, but the innards are supposedly identical.

Cray, though, is pointing to its software environment as the technology that really makes the XK6 something special. Although NVIDIA’s CUDA SDK comes standard with each system, Cray is also developing its own GPU compiler for C and Fortran, based on OpenMP extensions for accelerators. Their compiler is still in a pre-production state, but Cray will be handing it out to selected customers to kick the tires.

The idea is to provide programmers with a standard directives-based language environment for GPU computing. Since the developer need only insert directives to tell the compiler which pieces need to be GPU-ified, it’s a lot easier to convert existing CPU codes, compared to doing a CUDA port. The resulting directive-enhanced source can then be ported to other accelerator platforms, assuming they support the OpenMP accelerator extensions too. Or the directives can be stripped out if a standard CPU platform is all you have.

Cray is also supporting PGI’s GPU-capable compiler, which is directives-based as well, but it’s not an open standard like OpenMP. PGI and CAPS enterprise (which has its own HMPP directives for GPU computing) could of course adopt the OpenMP accelerator directives, and undoubtedly would do so if that version became the choice of developers. Given that OpenMP has a very strong following in the HPC community, it wouldn’t surprise me if developers opted for this particular solution.

Also, since both PGI and CAPS are on the OpenMP board, I’d venture to say that there will be a meeting of the minds over accelerator directives in the not-too-distant future. By the way, Intel is on the board too, so it’s conceivable that OpenMP acceleration will be supported for the upcoming Knights Ferry MIC processor as well.

The only caveat to a directives-based approach to programming GPU is that of performance. Something like CUDA or OpenCL can get much closer to the silicon and thus offer better performance if you know what you’re doing. The problem is a lot of developers don’t know what they’re doing — as a former software engineer, I say this without blushing — and in any case would prefer not to have to worry about the nitty-gritty details of GPU programming. Also, for the reasons stated above, there are significant advantages to building GPU codes in a high-level, hardware-independent language environment.

Cray is already tuning their OpenMP-based GPU compiler for performance. With their knowledge of all things vector, I expect they’ll eventually get to a happy place performance-wise. Certainly if such a programming model can shave a few months or even a few weeks off of development time, you have a lot more cycles to play with simply because you have a working program in hand.

The second high-profile GPU news item this week involved a successful GPU port of a machine learning algorithm by Pittsburgh Supercomputing Center (PSC) and HP Labs. In this case what I mean by successful is that the researchers achieved a 10X speedup of the algorithm using CUDA and an NVIDIA GPU-based system, compared to the equivalent code targeted for a CPU cluster. The system encompassed three nodes, with three GPUs and two CPUs per node. MPI was used for node-to-node chatter.

The algorithm in question, called k-means clustering, is used in machine learning to uncover patterns or association within large datasets. In this case, they used Google’s “Books N-gram” dataset to cluster all five-word sets of the one thousand most commonly used words occurring in all books published in 2005. With their GPU implementation, the researchers were able to cluster the entire dataset (15 million data points and 1000 dimensions) in less than nine seconds.

While that particular application might not be the most useful one ever invented, machine learning has a big place in data analytics generally. That includes a lot of HPC-type informatics work — genomics, proteomics, etc. There’s even the equivalent in the humanities, called culturomics, which is essentially the analysis of datasets having to do with human cultures. Basically any application that does data correlations across large datasets can make use of this method.

The CUDA version of this machine learning algorithm not only out-performed the CPU implementation (straight C) by a factor of 10, it was 1,000 times faster than an unspecified high-level language implementation used in machine learning research.

Ren Wu, principal investigator of the CUDA Research Center at HP Labs, developed the k-means clustering code for GPUs used by PSC. In the announcement he had plenty of nice things to say about CUDA:

“I think that the CUDA programming model is a very nice framework, well balanced on abstraction and expressing power, easy to learn but with enough control for advanced algorithm designers, and supported by hardware with exceptional performance (compared to other alternatives). The key for any high-performance algorithm on modern multi/many-core architecture is to minimize the data movement and to optimize against memory hierarchy. Keeping this in mind, CUDA is as easy, if not easier, than any other alternatives.”

Whether Wu could have extracted similar performance from an OpenMP accelerator programming implementation or something similar is questionable. Clearly there are going to be situations where using CUDA (or OpenCL) is warranted. This will be especially true for library routines/algorithms that are used across a wide variety of applications, and whose speed is critical to the application’s performance. For data parallel algorithms that are local to specific applications, a more high level approach may be the way to go.

We’ve certainly been here before with assembly code and high-level languages. Both have established their place in software development. Similarly we’re going to see high-level and low-level GPU programming frameworks moving forward together and it’s going to be up to the programmer to know when to apply each.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

‘Business Value’ of AI Heads Toward $4 Trillion

April 26, 2018

The rise of AI is reflected in recent market forecasts that predict it will help enterprises develop new products and services around applications like automated decision making. Market analyst Gartner Inc. forecasts Read more…

By George Leopold

Former AMD Chip Chief and ‘Zen’ Architect Jim Keller Joins Intel

April 26, 2018

Intel announced today it has hired top microprocessor architect Jim Keller as senior vice president to lead the company’s silicon engineering group, focusing on system-on-chip (SoC) development and integration. Read more…

By Tiffany Trader

Rackspace Is Latest to Roll Bare Metal Service

April 26, 2018

Rackspace is expanding its managed private cloud services with the addition of six new bare metal instances that it collectively refers to as bare metal as a service. The private cloud vendor announced the new managed Read more…

By George Leopold

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

Affordable Optical Technology Needed Says HPE’s Daley

April 26, 2018

While not new, the challenges presented by computer cabling/PCB circuit routing design – cost, performance, space requirements, and power management – have Read more…

By John Russell

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This