A Tale of Two GPU Computing Models

By Michael Feldman

May 26, 2011

There was plenty of GPU computing in the HPC news stream this week, but I’m going to focus on two announcements, since they’re somewhat at odds with each other — but not really.

The first is Cray’s big announcement of its Tesla-equipped XK6 super. The company has been talking up this system up for awhile and finally got the chance to spill the details on it thanks to NVIDIA’s launch last week of the second-generation Fermi GPU technology.

The system is not your garden-variety GPU cluster, though. The XK6 blade is a variant of the XE6 and like its CPU-only sibling is designed to scale well into multi-petaflops territory. A single rack will deliver about 70 teraflops. The blade will actually be using the X2090, a compact form factor variant of the new M2090 part, but the innards are supposedly identical.

Cray, though, is pointing to its software environment as the technology that really makes the XK6 something special. Although NVIDIA’s CUDA SDK comes standard with each system, Cray is also developing its own GPU compiler for C and Fortran, based on OpenMP extensions for accelerators. Their compiler is still in a pre-production state, but Cray will be handing it out to selected customers to kick the tires.

The idea is to provide programmers with a standard directives-based language environment for GPU computing. Since the developer need only insert directives to tell the compiler which pieces need to be GPU-ified, it’s a lot easier to convert existing CPU codes, compared to doing a CUDA port. The resulting directive-enhanced source can then be ported to other accelerator platforms, assuming they support the OpenMP accelerator extensions too. Or the directives can be stripped out if a standard CPU platform is all you have.

Cray is also supporting PGI’s GPU-capable compiler, which is directives-based as well, but it’s not an open standard like OpenMP. PGI and CAPS enterprise (which has its own HMPP directives for GPU computing) could of course adopt the OpenMP accelerator directives, and undoubtedly would do so if that version became the choice of developers. Given that OpenMP has a very strong following in the HPC community, it wouldn’t surprise me if developers opted for this particular solution.

Also, since both PGI and CAPS are on the OpenMP board, I’d venture to say that there will be a meeting of the minds over accelerator directives in the not-too-distant future. By the way, Intel is on the board too, so it’s conceivable that OpenMP acceleration will be supported for the upcoming Knights Ferry MIC processor as well.

The only caveat to a directives-based approach to programming GPU is that of performance. Something like CUDA or OpenCL can get much closer to the silicon and thus offer better performance if you know what you’re doing. The problem is a lot of developers don’t know what they’re doing — as a former software engineer, I say this without blushing — and in any case would prefer not to have to worry about the nitty-gritty details of GPU programming. Also, for the reasons stated above, there are significant advantages to building GPU codes in a high-level, hardware-independent language environment.

Cray is already tuning their OpenMP-based GPU compiler for performance. With their knowledge of all things vector, I expect they’ll eventually get to a happy place performance-wise. Certainly if such a programming model can shave a few months or even a few weeks off of development time, you have a lot more cycles to play with simply because you have a working program in hand.

The second high-profile GPU news item this week involved a successful GPU port of a machine learning algorithm by Pittsburgh Supercomputing Center (PSC) and HP Labs. In this case what I mean by successful is that the researchers achieved a 10X speedup of the algorithm using CUDA and an NVIDIA GPU-based system, compared to the equivalent code targeted for a CPU cluster. The system encompassed three nodes, with three GPUs and two CPUs per node. MPI was used for node-to-node chatter.

The algorithm in question, called k-means clustering, is used in machine learning to uncover patterns or association within large datasets. In this case, they used Google’s “Books N-gram” dataset to cluster all five-word sets of the one thousand most commonly used words occurring in all books published in 2005. With their GPU implementation, the researchers were able to cluster the entire dataset (15 million data points and 1000 dimensions) in less than nine seconds.

While that particular application might not be the most useful one ever invented, machine learning has a big place in data analytics generally. That includes a lot of HPC-type informatics work — genomics, proteomics, etc. There’s even the equivalent in the humanities, called culturomics, which is essentially the analysis of datasets having to do with human cultures. Basically any application that does data correlations across large datasets can make use of this method.

The CUDA version of this machine learning algorithm not only out-performed the CPU implementation (straight C) by a factor of 10, it was 1,000 times faster than an unspecified high-level language implementation used in machine learning research.

Ren Wu, principal investigator of the CUDA Research Center at HP Labs, developed the k-means clustering code for GPUs used by PSC. In the announcement he had plenty of nice things to say about CUDA:

“I think that the CUDA programming model is a very nice framework, well balanced on abstraction and expressing power, easy to learn but with enough control for advanced algorithm designers, and supported by hardware with exceptional performance (compared to other alternatives). The key for any high-performance algorithm on modern multi/many-core architecture is to minimize the data movement and to optimize against memory hierarchy. Keeping this in mind, CUDA is as easy, if not easier, than any other alternatives.”

Whether Wu could have extracted similar performance from an OpenMP accelerator programming implementation or something similar is questionable. Clearly there are going to be situations where using CUDA (or OpenCL) is warranted. This will be especially true for library routines/algorithms that are used across a wide variety of applications, and whose speed is critical to the application’s performance. For data parallel algorithms that are local to specific applications, a more high level approach may be the way to go.

We’ve certainly been here before with assembly code and high-level languages. Both have established their place in software development. Similarly we’re going to see high-level and low-level GPU programming frameworks moving forward together and it’s going to be up to the programmer to know when to apply each.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Google’s Bill Magro, an HPCwire Person to Watch in 2021

June 11, 2021

Last Fall Bill Magro joined Google as CTO of HPC, a newly created position, after two decades at Intel, where he was responsible for the company's HPC strategy. This interview was conducted by email at the beginning of A Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their correspondingly powerful cooling systems. As a result, these Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, with the U.K.-based Cambridge Quantum Computing (CQC), which Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled its in-person component with a couple months’ notice, ISC Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

AWS Solution Channel

Building highly-available HPC infrastructure on AWS

Reminder: You can learn a lot from AWS HPC engineers by subscribing to the HPC Tech Short YouTube channel, and following the AWS HPC Blog channel. Read more…

Space Weather Prediction Gets a Supercomputing Boost

June 9, 2021

Solar winds are a hot topic in the HPC world right now, with supercomputer-powered research spanning from the Princeton Plasma Physics Laboratory (which used Oak Ridge’s Titan system) to University College London (which used resources from the DiRAC HPC facility). One of the larger... Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their c Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

What is Thermodynamic Computing and Could It Become Important?

June 3, 2021

What, exactly, is thermodynamic computing? (Yes, we know everything obeys thermodynamic laws.) A trio of researchers from Microsoft, UC San Diego, and Georgia Tech have written an interesting viewpoint in the June issue... Read more…

AMD Introduces 3D Chiplets, Demos Vertical Cache on Zen 3 CPUs

June 2, 2021

At Computex 2021, held virtually this week, AMD showcased a new 3D chiplet architecture that will be used for future high-performance computing products set to Read more…

Nvidia Expands Its Certified Server Models, Unveils DGX SuperPod Subscriptions

June 2, 2021

Nvidia is busy this week at the virtual Computex 2021 Taipei technology show, announcing an expansion of its nascent Nvidia-certified server program, a range of Read more…

Using HPC Cloud, Researchers Investigate the COVID-19 Lab Leak Hypothesis

May 27, 2021

At the end of 2019, strange pneumonia cases started cropping up in Wuhan, China. As Wuhan (then China, then the world) scrambled to contain what would, of cours Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire