The Weekly Top Five

By Tiffany Trader

May 26, 2011

The Weekly Top Five features the five biggest HPC stories of the week, condensed for your reading pleasure. This week, we cover the NC State effort to overcome the memory limitations of multicore chips; the sale of the first-ever commercial quantum computing system; Cray’s first GPU-accelerated machine; speedier machine learning algorithms; and the connection between shrinking budgets and increased reliance on modeling and simulation.

Research Technique Addresses Multicore Memory Limitations

A new technique developed by researchers at North Carolina State University promises to boost multicore chip performance from between 10 to 40 percent. The new approach is two-pronged, using a combination of bandwidth allocation and “prefetching” strategies.

One of the limitations to multicore performance is the memory problem. Each core needs to access off-chip data, but there is only so much bandwidth available. With the proliferation of multicore designs, the data pathway is all the more congested. The NC State researchers developed a system of bandwidth allocation based on the fact that some cores require more access to offchip data than others. Implementing an on-chip memory store (cache-based) allows the chip to prefetch data. When prefetching is used in an intelligent as-needed basis, performance is further enhanced.

With boths sets of criteria working in tandem, “researchers were able to boost multicore chip performance by 40 percent, compared to multicore chips that do not prefetch data, and by 10 percent over multicore chips that always prefetch data,” the release explained.

First-Ever Commercial Quantum Computing System Sold

Vancouver-based research outfit D-Wave Systems, Inc. began generating buzz in 2007 when the company announced it had built the first commercially-viable quantum computer. The claim was difficult to verify and received a fair amount of skepticism.

Now four years later, D-Wave has announced the first sale of a quantum computing system, known as D-Wave One, to Lockheed Martin Corporation. As part of a multi-year contract, “Lockheed Martin and D-Wave will collaborate to realize the benefits of a computing platform based upon a quantum annealing processor, as applied to some of Lockheed Martin’s most challenging computation problems.” D-Wave will also be providing Lockheed with maintenance and related services.

The D-Wave One relies on a technique called quantum annealing, which provides the computational framework for a quantum processor. It was also the subject of an article published in the May 12 edition of Nature. The computer’s 128-qubit processor, known as Rainier, relies on quantum mechanics to tackle the most complex computational problems. While Lockheed Martin’s exact interest in the system was not specified, suitable applications include financial risk analysis, object recognition and classification, bioinformatics, cryptology and more.

A Physics World article cited expert collaboration regarding the system’s authenticity. MIT’s William Oliver, although not part of the research team, went on record as saying: “This is the first time that the D-Wave system has been shown to exhibit quantum mechanical behaviour.” Oliver characterized the development as “a technical achievement and an important first step.”

Further coverage of this historic event, including an interview with D-Wave co-founder and CTO Geordie Rose, is available here.

Cray Debuts GPU-CPU Supercomputer

The newest Cray supercomputing system, called the Cray XK6, relies on processor technology from AMD and NVIDIA to achieve a true hybrid design that offers up to 50 petaflops of compute power. Launched at the 2011 Cray User Group (CUG) meeting in Fairbanks, Alaska, the supercomputer employs a combination of AMD Opteron 6200 Series processors (code-named “Interlagos”) and NVIDIA Tesla 20-Series GPUs, and provides users with the option to run applications with either scalar or accelerator components.

The XK6 is the first Cray system to implement the accelerative power of GPU computing, and Barry Bolding, vice president of Cray’s product division, highlights this fact:

“Cray has a long history of working with accelerators in our vector technologies. We are leveraging this expertise to create a scalable hybrid supercomputer — and the associated first-generation of a unified x86/GPU programming environment — that will allow the system to more productively meet the scientific challenges of today and tomorrow.”

Cray already has its first customer; the Swiss National Supercomputing Centre (CSCS) in Manno, Switzerland, is upgrading its Cray XE6m system, nicknamed “Piz Palu,” to a multi-cabinet Cray XK6 supercomputer.

The Cray XK6, which is scheduled for release in the second half of 2011, will be available in both single and multi-cabinet configurations and scales from tens of compute nodes to tens of thousands of compute nodes. Upgrade paths will be possible for the Cray XT4, Cray XT5, Cray XT6 and Cray XE6 systems.

For additional insight into this Cray first, check out our feature coverage.

PSC, HP Labs Speed Machine Learning Algorithm with GPUs

Researchers from the Pittsburgh Supercomputing Center (PSC) and HP Labs have figured out how to speed the process of key machine-learning algorithms using the power of GPU computing. Specifically, the team has achieved nearly 10 time speed-ups with GPUs versus CPU-only code, and more than 1,000 times versus an implementation in an unspecified high-level language. Machine learning is a branch of artificial intelligence that “enables computers to process and learn from vast amounts of empirical data through algorithms that can recognize complex patterns and make intelligent decisions based on them.”

The application the research team is working with is called k-means clustering, popular in data analysis and “one of the most frequently used clustering methods in machine learning,” according to William Cohen, professor of machine learning at Carnegie Mellon University.

Ren Wu, principal investigator of the CUDA Research Center at HP Labs, developed the GPU-accelerated cluster algorithms. Wu then teamed up with PSC scientific specialist Joel Welling to test the algorithms on a real-world problem, which used data from Google’s “Books N-gram” dataset. This type of N-gram problem is common in natural-language processing. The researchers clustered the entire dataset, with more than 15 million data points and 1,000 dimensions, in less than nine seconds. This kind of breakthrough will allow future research to explore the use of more complex algorithms in tandem with k-means clustering.

Lean Budget Increases Government Reliance on Modeling and Simulation

The Institute for Defense & Government Advancement (IDGA) put out a brief statement last week, suggesting a link between declining budgets and a growing demand modeling & simulation (M&S) tools.

Last week, the Army and Department of Defense (DoD) awarded a $2.5 billion contract to Science Applications International Corporation (SAIC) for a combination of planning, modeling, simulation and training solutions. According to the IDGA, “this contract signifies the growing need for simulation training to prepare troops for combat. Despite budget constraints, Modeling and Simulation (M&S) is expanding as technological improvements develop. M&S is the more viable and cost-effective option for tomorrow’s armed forces.”

The IDGA also announced that its 2nd Annual Modeling and Simulation Summit will explore the latest technological advancements and look at the lessons to be learned from recent efforts. This event will have a focus on military strategies for M&S, such as Irregular Warfare and Counter-IED training.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This