The Weekly Top Five

By Tiffany Trader

May 26, 2011

The Weekly Top Five features the five biggest HPC stories of the week, condensed for your reading pleasure. This week, we cover the NC State effort to overcome the memory limitations of multicore chips; the sale of the first-ever commercial quantum computing system; Cray’s first GPU-accelerated machine; speedier machine learning algorithms; and the connection between shrinking budgets and increased reliance on modeling and simulation.

Research Technique Addresses Multicore Memory Limitations

A new technique developed by researchers at North Carolina State University promises to boost multicore chip performance from between 10 to 40 percent. The new approach is two-pronged, using a combination of bandwidth allocation and “prefetching” strategies.

One of the limitations to multicore performance is the memory problem. Each core needs to access off-chip data, but there is only so much bandwidth available. With the proliferation of multicore designs, the data pathway is all the more congested. The NC State researchers developed a system of bandwidth allocation based on the fact that some cores require more access to offchip data than others. Implementing an on-chip memory store (cache-based) allows the chip to prefetch data. When prefetching is used in an intelligent as-needed basis, performance is further enhanced.

With boths sets of criteria working in tandem, “researchers were able to boost multicore chip performance by 40 percent, compared to multicore chips that do not prefetch data, and by 10 percent over multicore chips that always prefetch data,” the release explained.

First-Ever Commercial Quantum Computing System Sold

Vancouver-based research outfit D-Wave Systems, Inc. began generating buzz in 2007 when the company announced it had built the first commercially-viable quantum computer. The claim was difficult to verify and received a fair amount of skepticism.

Now four years later, D-Wave has announced the first sale of a quantum computing system, known as D-Wave One, to Lockheed Martin Corporation. As part of a multi-year contract, “Lockheed Martin and D-Wave will collaborate to realize the benefits of a computing platform based upon a quantum annealing processor, as applied to some of Lockheed Martin’s most challenging computation problems.” D-Wave will also be providing Lockheed with maintenance and related services.

The D-Wave One relies on a technique called quantum annealing, which provides the computational framework for a quantum processor. It was also the subject of an article published in the May 12 edition of Nature. The computer’s 128-qubit processor, known as Rainier, relies on quantum mechanics to tackle the most complex computational problems. While Lockheed Martin’s exact interest in the system was not specified, suitable applications include financial risk analysis, object recognition and classification, bioinformatics, cryptology and more.

A Physics World article cited expert collaboration regarding the system’s authenticity. MIT’s William Oliver, although not part of the research team, went on record as saying: “This is the first time that the D-Wave system has been shown to exhibit quantum mechanical behaviour.” Oliver characterized the development as “a technical achievement and an important first step.”

Further coverage of this historic event, including an interview with D-Wave co-founder and CTO Geordie Rose, is available here.

Cray Debuts GPU-CPU Supercomputer

The newest Cray supercomputing system, called the Cray XK6, relies on processor technology from AMD and NVIDIA to achieve a true hybrid design that offers up to 50 petaflops of compute power. Launched at the 2011 Cray User Group (CUG) meeting in Fairbanks, Alaska, the supercomputer employs a combination of AMD Opteron 6200 Series processors (code-named “Interlagos”) and NVIDIA Tesla 20-Series GPUs, and provides users with the option to run applications with either scalar or accelerator components.

The XK6 is the first Cray system to implement the accelerative power of GPU computing, and Barry Bolding, vice president of Cray’s product division, highlights this fact:

“Cray has a long history of working with accelerators in our vector technologies. We are leveraging this expertise to create a scalable hybrid supercomputer — and the associated first-generation of a unified x86/GPU programming environment — that will allow the system to more productively meet the scientific challenges of today and tomorrow.”

Cray already has its first customer; the Swiss National Supercomputing Centre (CSCS) in Manno, Switzerland, is upgrading its Cray XE6m system, nicknamed “Piz Palu,” to a multi-cabinet Cray XK6 supercomputer.

The Cray XK6, which is scheduled for release in the second half of 2011, will be available in both single and multi-cabinet configurations and scales from tens of compute nodes to tens of thousands of compute nodes. Upgrade paths will be possible for the Cray XT4, Cray XT5, Cray XT6 and Cray XE6 systems.

For additional insight into this Cray first, check out our feature coverage.

PSC, HP Labs Speed Machine Learning Algorithm with GPUs

Researchers from the Pittsburgh Supercomputing Center (PSC) and HP Labs have figured out how to speed the process of key machine-learning algorithms using the power of GPU computing. Specifically, the team has achieved nearly 10 time speed-ups with GPUs versus CPU-only code, and more than 1,000 times versus an implementation in an unspecified high-level language. Machine learning is a branch of artificial intelligence that “enables computers to process and learn from vast amounts of empirical data through algorithms that can recognize complex patterns and make intelligent decisions based on them.”

The application the research team is working with is called k-means clustering, popular in data analysis and “one of the most frequently used clustering methods in machine learning,” according to William Cohen, professor of machine learning at Carnegie Mellon University.

Ren Wu, principal investigator of the CUDA Research Center at HP Labs, developed the GPU-accelerated cluster algorithms. Wu then teamed up with PSC scientific specialist Joel Welling to test the algorithms on a real-world problem, which used data from Google’s “Books N-gram” dataset. This type of N-gram problem is common in natural-language processing. The researchers clustered the entire dataset, with more than 15 million data points and 1,000 dimensions, in less than nine seconds. This kind of breakthrough will allow future research to explore the use of more complex algorithms in tandem with k-means clustering.

Lean Budget Increases Government Reliance on Modeling and Simulation

The Institute for Defense & Government Advancement (IDGA) put out a brief statement last week, suggesting a link between declining budgets and a growing demand modeling & simulation (M&S) tools.

Last week, the Army and Department of Defense (DoD) awarded a $2.5 billion contract to Science Applications International Corporation (SAIC) for a combination of planning, modeling, simulation and training solutions. According to the IDGA, “this contract signifies the growing need for simulation training to prepare troops for combat. Despite budget constraints, Modeling and Simulation (M&S) is expanding as technological improvements develop. M&S is the more viable and cost-effective option for tomorrow’s armed forces.”

The IDGA also announced that its 2nd Annual Modeling and Simulation Summit will explore the latest technological advancements and look at the lessons to be learned from recent efforts. This event will have a focus on military strategies for M&S, such as Irregular Warfare and Counter-IED training.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This