A Dark Matter for Astrophysics Research

By Nicole Hemsoth

May 31, 2011

Back in 2008, the Sloan Digital Sky Survey (SDSS) came to an end, leaving behind hundreds of terabytes of publicly-available data that has since been used in a range of research projects. Based on this data, researchers have been able to discover distant quasars powered by supermassive black holes in the early universe, uncover collections of sub-stellar objects, and have mapped extended mass distributions around galaxies with weak gravitational fields.

Among the diverse groups of scientists tackling problems that can now be understood using the SDSS data is a team led by Dr. Risa Wechsler from Stanford University’s Department of Physics and the SLAC National Accelerator Laboratory.

Wechsler is interested in the process of galaxy formation, the development of universal structure, and what these can tell us about the fundamental physics of the universe. Naturally, dark energy and dark matter enter the equation when one is considering galactic formation and there are few better keys to probing these concepts than data generated from the SDSS.

Just as the Sloan Digital Sky Survey presented several new data storage and computational challenges, so too do the efforts to extract meaningful discoveries. Teasing apart important information for simulations and analysis generates its own string of terabytes on top of the initial SDSS data. This creates a dark matter of its own for computer scientists as they struggle to keep pace with ever-expanding volumes that are outpacing the capability of the systems designed to handle them.

Wechsler’s team used the project’s astronomical data to make comparisons in the relative luminosity of millions of galaxies to our own Milky Way. All told, the project took images of nearly one-quarter of the sky, creating its own data challenges. The findings revealed that galaxies with two satellites that are nearby with large and small Magellanic clouds are highly unique — only about four percent of galaxies have similarities to the Milky Way.

To arrive at their conclusions, the group downloaded all of the publicly available Sloan data and began looking for satellite galaxies around the Milky Way, combing through about a million galaxies with spectroscopy to select a mere 20,000 with luminosity similar to that of our own galaxy. With these select galaxies identified, they undertook the task of mining those images for evidence of nearby fainter galaxies via a random review method. As Wechsler noted, running on the Pleiades supercomputer at NASA Ames, it took roughly 6.5 million CPU hours to run a simulation of a region of the universe done with 8 billion particles, making it one of the largest simulations that has ever been done in terms of particle numbers. She said that when you move to smaller box sizes it takes a lot more CPU time per particle because the universe is more clustered on smaller scales.

Wechsler described the two distinct pipelines required for this type of reserach. First, there’s the simulation in which researchers spend time looking for galaxies in a model universe. Wechsler told us that this simulation was done on the Pleiades machine at Ames across 10,000 CPUs. From there, the team performed an analysis of this simulation, which shows the evolution of structure formations on the piece of the universe across its entire history of almost 14 billion years — a process that involves the examination of dark matter halo histories across history. As she noted, the team was “looking for gravitationally bound clumps in that dark matter distribution; you have a distribution of matter at a given time and you want to find the peaks in that density distribution since that is where we expect galaxies to form. We were looking for those types of peas across the 200 snapshots we tool to summarize that entire 14 billion year period.”

The team needed to understand the evolutionary processes that occurred between the many billions of years captured in 200 distinct moments. This meant they had to trace the particles from one snapshot to the next in their clumps, which are called dark matter halos. Once the team found the halos, which again, are associated with galaxy formation, they did a statistical analysis that sought out anything that looked like our own Milky Way. Wechsler told is that “the volume of the simulation was comparable to the volume of the data that we were looking at. Out of the 8 million or so total clumps in our simulation we found our set of 20,000 that looked like possibilities to compare to the Milky Way. By looking for fainter things around them — and remember there are a lot more faint things than bright ones — we were looking for many, many possibilities at one time.”

The computational challenges are abundant in a project like this Wechsler said. Out of all bottlenecks, storage has been the most persistent, although she noted that as of now there are no real solutions to these problems.

Aside from bottlenecks due to the massive storage requirements, Wechsler said that the other computational challenge was that even though this project represented one of the highest resolution simulations at such a volume, they require more power. She said that although they can do larger simulation in a lower resolution, getting the full dynamic range of the calculation is critical. This simulation breaks new ground in terms of being able to simulate Magellenic cloud size objects over a large volume, but it’s still smaller than the volume that the observations are able to probe. This means that scaling this kind calculation up to the next level is a major challenge, especially as Wechsler embarks on new projects.

“Our data challenges are the same as those in many other fields that are tackling multiscale problems. We have a wide dynamic range of statistics to deal with but what did enable us to do this simulation is being able to resolve many small objects in a large volume. For this and other research projects, having a wide dynamic range of scales is crucial so some of our lessons can certainly be carried over to other fields.”

As Alex Szalay friom the Johns Hopkins University Department of Physics and Astonomy noted, this is a prime example of the kinds of big data problems that researchers in astrophysics and other fields are facing. They are, as he told us, “forced to make tradoffs when they enter the extreme scale” and need to find ways to manage both storage and CPU resources so that these tradeoffs have the least possible impact on the overall time to solutions. Dr. Szalay addressed some of the specific challenges involved in Wechsler’s project in a recent presentation called “Extreme Databases-Centric Scientific Computing.” In the presentation he addresses the new scalable architectures required for data-intensive scientific applications, looking at the databases as the root point to begin exploring new solutions.

For the dark energy survey, the team will take images of about one-eighth of the sky going back seven billion years. The large synoptic survey telescope, which is currently being built will take images of the half the sky every three days and will provide even more faintness detection, detecting the brightest stars back to a few billion years after the big bang. One goal with this is to map where everything is in order to figure out what the universe is made of. Galaxy surveys help with this research because they can map the physics to large events via simulations to understand galactic evolution.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This