A Dark Matter for Astrophysics Research

By Nicole Hemsoth

May 31, 2011

Back in 2008, the Sloan Digital Sky Survey (SDSS) came to an end, leaving behind hundreds of terabytes of publicly-available data that has since been used in a range of research projects. Based on this data, researchers have been able to discover distant quasars powered by supermassive black holes in the early universe, uncover collections of sub-stellar objects, and have mapped extended mass distributions around galaxies with weak gravitational fields.

Among the diverse groups of scientists tackling problems that can now be understood using the SDSS data is a team led by Dr. Risa Wechsler from Stanford University’s Department of Physics and the SLAC National Accelerator Laboratory.

Wechsler is interested in the process of galaxy formation, the development of universal structure, and what these can tell us about the fundamental physics of the universe. Naturally, dark energy and dark matter enter the equation when one is considering galactic formation and there are few better keys to probing these concepts than data generated from the SDSS.

Just as the Sloan Digital Sky Survey presented several new data storage and computational challenges, so too do the efforts to extract meaningful discoveries. Teasing apart important information for simulations and analysis generates its own string of terabytes on top of the initial SDSS data. This creates a dark matter of its own for computer scientists as they struggle to keep pace with ever-expanding volumes that are outpacing the capability of the systems designed to handle them.

Wechsler’s team used the project’s astronomical data to make comparisons in the relative luminosity of millions of galaxies to our own Milky Way. All told, the project took images of nearly one-quarter of the sky, creating its own data challenges. The findings revealed that galaxies with two satellites that are nearby with large and small Magellanic clouds are highly unique — only about four percent of galaxies have similarities to the Milky Way.

To arrive at their conclusions, the group downloaded all of the publicly available Sloan data and began looking for satellite galaxies around the Milky Way, combing through about a million galaxies with spectroscopy to select a mere 20,000 with luminosity similar to that of our own galaxy. With these select galaxies identified, they undertook the task of mining those images for evidence of nearby fainter galaxies via a random review method. As Wechsler noted, running on the Pleiades supercomputer at NASA Ames, it took roughly 6.5 million CPU hours to run a simulation of a region of the universe done with 8 billion particles, making it one of the largest simulations that has ever been done in terms of particle numbers. She said that when you move to smaller box sizes it takes a lot more CPU time per particle because the universe is more clustered on smaller scales.

Wechsler described the two distinct pipelines required for this type of reserach. First, there’s the simulation in which researchers spend time looking for galaxies in a model universe. Wechsler told us that this simulation was done on the Pleiades machine at Ames across 10,000 CPUs. From there, the team performed an analysis of this simulation, which shows the evolution of structure formations on the piece of the universe across its entire history of almost 14 billion years — a process that involves the examination of dark matter halo histories across history. As she noted, the team was “looking for gravitationally bound clumps in that dark matter distribution; you have a distribution of matter at a given time and you want to find the peaks in that density distribution since that is where we expect galaxies to form. We were looking for those types of peas across the 200 snapshots we tool to summarize that entire 14 billion year period.”

The team needed to understand the evolutionary processes that occurred between the many billions of years captured in 200 distinct moments. This meant they had to trace the particles from one snapshot to the next in their clumps, which are called dark matter halos. Once the team found the halos, which again, are associated with galaxy formation, they did a statistical analysis that sought out anything that looked like our own Milky Way. Wechsler told is that “the volume of the simulation was comparable to the volume of the data that we were looking at. Out of the 8 million or so total clumps in our simulation we found our set of 20,000 that looked like possibilities to compare to the Milky Way. By looking for fainter things around them — and remember there are a lot more faint things than bright ones — we were looking for many, many possibilities at one time.”

The computational challenges are abundant in a project like this Wechsler said. Out of all bottlenecks, storage has been the most persistent, although she noted that as of now there are no real solutions to these problems.

Aside from bottlenecks due to the massive storage requirements, Wechsler said that the other computational challenge was that even though this project represented one of the highest resolution simulations at such a volume, they require more power. She said that although they can do larger simulation in a lower resolution, getting the full dynamic range of the calculation is critical. This simulation breaks new ground in terms of being able to simulate Magellenic cloud size objects over a large volume, but it’s still smaller than the volume that the observations are able to probe. This means that scaling this kind calculation up to the next level is a major challenge, especially as Wechsler embarks on new projects.

“Our data challenges are the same as those in many other fields that are tackling multiscale problems. We have a wide dynamic range of statistics to deal with but what did enable us to do this simulation is being able to resolve many small objects in a large volume. For this and other research projects, having a wide dynamic range of scales is crucial so some of our lessons can certainly be carried over to other fields.”

As Alex Szalay friom the Johns Hopkins University Department of Physics and Astonomy noted, this is a prime example of the kinds of big data problems that researchers in astrophysics and other fields are facing. They are, as he told us, “forced to make tradoffs when they enter the extreme scale” and need to find ways to manage both storage and CPU resources so that these tradeoffs have the least possible impact on the overall time to solutions. Dr. Szalay addressed some of the specific challenges involved in Wechsler’s project in a recent presentation called “Extreme Databases-Centric Scientific Computing.” In the presentation he addresses the new scalable architectures required for data-intensive scientific applications, looking at the databases as the root point to begin exploring new solutions.

For the dark energy survey, the team will take images of about one-eighth of the sky going back seven billion years. The large synoptic survey telescope, which is currently being built will take images of the half the sky every three days and will provide even more faintness detection, detecting the brightest stars back to a few billion years after the big bang. One goal with this is to map where everything is in order to figure out what the universe is made of. Galaxy surveys help with this research because they can map the physics to large events via simulations to understand galactic evolution.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This