A Dark Matter for Astrophysics Research

By Nicole Hemsoth

May 31, 2011

Back in 2008, the Sloan Digital Sky Survey (SDSS) came to an end, leaving behind hundreds of terabytes of publicly-available data that has since been used in a range of research projects. Based on this data, researchers have been able to discover distant quasars powered by supermassive black holes in the early universe, uncover collections of sub-stellar objects, and have mapped extended mass distributions around galaxies with weak gravitational fields.

Among the diverse groups of scientists tackling problems that can now be understood using the SDSS data is a team led by Dr. Risa Wechsler from Stanford University’s Department of Physics and the SLAC National Accelerator Laboratory.

Wechsler is interested in the process of galaxy formation, the development of universal structure, and what these can tell us about the fundamental physics of the universe. Naturally, dark energy and dark matter enter the equation when one is considering galactic formation and there are few better keys to probing these concepts than data generated from the SDSS.

Just as the Sloan Digital Sky Survey presented several new data storage and computational challenges, so too do the efforts to extract meaningful discoveries. Teasing apart important information for simulations and analysis generates its own string of terabytes on top of the initial SDSS data. This creates a dark matter of its own for computer scientists as they struggle to keep pace with ever-expanding volumes that are outpacing the capability of the systems designed to handle them.

Wechsler’s team used the project’s astronomical data to make comparisons in the relative luminosity of millions of galaxies to our own Milky Way. All told, the project took images of nearly one-quarter of the sky, creating its own data challenges. The findings revealed that galaxies with two satellites that are nearby with large and small Magellanic clouds are highly unique — only about four percent of galaxies have similarities to the Milky Way.

To arrive at their conclusions, the group downloaded all of the publicly available Sloan data and began looking for satellite galaxies around the Milky Way, combing through about a million galaxies with spectroscopy to select a mere 20,000 with luminosity similar to that of our own galaxy. With these select galaxies identified, they undertook the task of mining those images for evidence of nearby fainter galaxies via a random review method. As Wechsler noted, running on the Pleiades supercomputer at NASA Ames, it took roughly 6.5 million CPU hours to run a simulation of a region of the universe done with 8 billion particles, making it one of the largest simulations that has ever been done in terms of particle numbers. She said that when you move to smaller box sizes it takes a lot more CPU time per particle because the universe is more clustered on smaller scales.

Wechsler described the two distinct pipelines required for this type of reserach. First, there’s the simulation in which researchers spend time looking for galaxies in a model universe. Wechsler told us that this simulation was done on the Pleiades machine at Ames across 10,000 CPUs. From there, the team performed an analysis of this simulation, which shows the evolution of structure formations on the piece of the universe across its entire history of almost 14 billion years — a process that involves the examination of dark matter halo histories across history. As she noted, the team was “looking for gravitationally bound clumps in that dark matter distribution; you have a distribution of matter at a given time and you want to find the peaks in that density distribution since that is where we expect galaxies to form. We were looking for those types of peas across the 200 snapshots we tool to summarize that entire 14 billion year period.”

The team needed to understand the evolutionary processes that occurred between the many billions of years captured in 200 distinct moments. This meant they had to trace the particles from one snapshot to the next in their clumps, which are called dark matter halos. Once the team found the halos, which again, are associated with galaxy formation, they did a statistical analysis that sought out anything that looked like our own Milky Way. Wechsler told is that “the volume of the simulation was comparable to the volume of the data that we were looking at. Out of the 8 million or so total clumps in our simulation we found our set of 20,000 that looked like possibilities to compare to the Milky Way. By looking for fainter things around them — and remember there are a lot more faint things than bright ones — we were looking for many, many possibilities at one time.”

The computational challenges are abundant in a project like this Wechsler said. Out of all bottlenecks, storage has been the most persistent, although she noted that as of now there are no real solutions to these problems.

Aside from bottlenecks due to the massive storage requirements, Wechsler said that the other computational challenge was that even though this project represented one of the highest resolution simulations at such a volume, they require more power. She said that although they can do larger simulation in a lower resolution, getting the full dynamic range of the calculation is critical. This simulation breaks new ground in terms of being able to simulate Magellenic cloud size objects over a large volume, but it’s still smaller than the volume that the observations are able to probe. This means that scaling this kind calculation up to the next level is a major challenge, especially as Wechsler embarks on new projects.

“Our data challenges are the same as those in many other fields that are tackling multiscale problems. We have a wide dynamic range of statistics to deal with but what did enable us to do this simulation is being able to resolve many small objects in a large volume. For this and other research projects, having a wide dynamic range of scales is crucial so some of our lessons can certainly be carried over to other fields.”

As Alex Szalay friom the Johns Hopkins University Department of Physics and Astonomy noted, this is a prime example of the kinds of big data problems that researchers in astrophysics and other fields are facing. They are, as he told us, “forced to make tradoffs when they enter the extreme scale” and need to find ways to manage both storage and CPU resources so that these tradeoffs have the least possible impact on the overall time to solutions. Dr. Szalay addressed some of the specific challenges involved in Wechsler’s project in a recent presentation called “Extreme Databases-Centric Scientific Computing.” In the presentation he addresses the new scalable architectures required for data-intensive scientific applications, looking at the databases as the root point to begin exploring new solutions.

For the dark energy survey, the team will take images of about one-eighth of the sky going back seven billion years. The large synoptic survey telescope, which is currently being built will take images of the half the sky every three days and will provide even more faintness detection, detecting the brightest stars back to a few billion years after the big bang. One goal with this is to map where everything is in order to figure out what the universe is made of. Galaxy surveys help with this research because they can map the physics to large events via simulations to understand galactic evolution.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This