A Dark Matter for Astrophysics Research

By Nicole Hemsoth

May 31, 2011

Back in 2008, the Sloan Digital Sky Survey (SDSS) came to an end, leaving behind hundreds of terabytes of publicly-available data that has since been used in a range of research projects. Based on this data, researchers have been able to discover distant quasars powered by supermassive black holes in the early universe, uncover collections of sub-stellar objects, and have mapped extended mass distributions around galaxies with weak gravitational fields.

Among the diverse groups of scientists tackling problems that can now be understood using the SDSS data is a team led by Dr. Risa Wechsler from Stanford University’s Department of Physics and the SLAC National Accelerator Laboratory.

Wechsler is interested in the process of galaxy formation, the development of universal structure, and what these can tell us about the fundamental physics of the universe. Naturally, dark energy and dark matter enter the equation when one is considering galactic formation and there are few better keys to probing these concepts than data generated from the SDSS.

Just as the Sloan Digital Sky Survey presented several new data storage and computational challenges, so too do the efforts to extract meaningful discoveries. Teasing apart important information for simulations and analysis generates its own string of terabytes on top of the initial SDSS data. This creates a dark matter of its own for computer scientists as they struggle to keep pace with ever-expanding volumes that are outpacing the capability of the systems designed to handle them.

Wechsler’s team used the project’s astronomical data to make comparisons in the relative luminosity of millions of galaxies to our own Milky Way. All told, the project took images of nearly one-quarter of the sky, creating its own data challenges. The findings revealed that galaxies with two satellites that are nearby with large and small Magellanic clouds are highly unique — only about four percent of galaxies have similarities to the Milky Way.

To arrive at their conclusions, the group downloaded all of the publicly available Sloan data and began looking for satellite galaxies around the Milky Way, combing through about a million galaxies with spectroscopy to select a mere 20,000 with luminosity similar to that of our own galaxy. With these select galaxies identified, they undertook the task of mining those images for evidence of nearby fainter galaxies via a random review method. As Wechsler noted, running on the Pleiades supercomputer at NASA Ames, it took roughly 6.5 million CPU hours to run a simulation of a region of the universe done with 8 billion particles, making it one of the largest simulations that has ever been done in terms of particle numbers. She said that when you move to smaller box sizes it takes a lot more CPU time per particle because the universe is more clustered on smaller scales.

Wechsler described the two distinct pipelines required for this type of reserach. First, there’s the simulation in which researchers spend time looking for galaxies in a model universe. Wechsler told us that this simulation was done on the Pleiades machine at Ames across 10,000 CPUs. From there, the team performed an analysis of this simulation, which shows the evolution of structure formations on the piece of the universe across its entire history of almost 14 billion years — a process that involves the examination of dark matter halo histories across history. As she noted, the team was “looking for gravitationally bound clumps in that dark matter distribution; you have a distribution of matter at a given time and you want to find the peaks in that density distribution since that is where we expect galaxies to form. We were looking for those types of peas across the 200 snapshots we tool to summarize that entire 14 billion year period.”

The team needed to understand the evolutionary processes that occurred between the many billions of years captured in 200 distinct moments. This meant they had to trace the particles from one snapshot to the next in their clumps, which are called dark matter halos. Once the team found the halos, which again, are associated with galaxy formation, they did a statistical analysis that sought out anything that looked like our own Milky Way. Wechsler told is that “the volume of the simulation was comparable to the volume of the data that we were looking at. Out of the 8 million or so total clumps in our simulation we found our set of 20,000 that looked like possibilities to compare to the Milky Way. By looking for fainter things around them — and remember there are a lot more faint things than bright ones — we were looking for many, many possibilities at one time.”

The computational challenges are abundant in a project like this Wechsler said. Out of all bottlenecks, storage has been the most persistent, although she noted that as of now there are no real solutions to these problems.

Aside from bottlenecks due to the massive storage requirements, Wechsler said that the other computational challenge was that even though this project represented one of the highest resolution simulations at such a volume, they require more power. She said that although they can do larger simulation in a lower resolution, getting the full dynamic range of the calculation is critical. This simulation breaks new ground in terms of being able to simulate Magellenic cloud size objects over a large volume, but it’s still smaller than the volume that the observations are able to probe. This means that scaling this kind calculation up to the next level is a major challenge, especially as Wechsler embarks on new projects.

“Our data challenges are the same as those in many other fields that are tackling multiscale problems. We have a wide dynamic range of statistics to deal with but what did enable us to do this simulation is being able to resolve many small objects in a large volume. For this and other research projects, having a wide dynamic range of scales is crucial so some of our lessons can certainly be carried over to other fields.”

As Alex Szalay friom the Johns Hopkins University Department of Physics and Astonomy noted, this is a prime example of the kinds of big data problems that researchers in astrophysics and other fields are facing. They are, as he told us, “forced to make tradoffs when they enter the extreme scale” and need to find ways to manage both storage and CPU resources so that these tradeoffs have the least possible impact on the overall time to solutions. Dr. Szalay addressed some of the specific challenges involved in Wechsler’s project in a recent presentation called “Extreme Databases-Centric Scientific Computing.” In the presentation he addresses the new scalable architectures required for data-intensive scientific applications, looking at the databases as the root point to begin exploring new solutions.

For the dark energy survey, the team will take images of about one-eighth of the sky going back seven billion years. The large synoptic survey telescope, which is currently being built will take images of the half the sky every three days and will provide even more faintness detection, detecting the brightest stars back to a few billion years after the big bang. One goal with this is to map where everything is in order to figure out what the universe is made of. Galaxy surveys help with this research because they can map the physics to large events via simulations to understand galactic evolution.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This