A Dark Matter for Astrophysics Research

By Nicole Hemsoth

May 31, 2011

Back in 2008, the Sloan Digital Sky Survey (SDSS) came to an end, leaving behind hundreds of terabytes of publicly-available data that has since been used in a range of research projects. Based on this data, researchers have been able to discover distant quasars powered by supermassive black holes in the early universe, uncover collections of sub-stellar objects, and have mapped extended mass distributions around galaxies with weak gravitational fields.

Among the diverse groups of scientists tackling problems that can now be understood using the SDSS data is a team led by Dr. Risa Wechsler from Stanford University’s Department of Physics and the SLAC National Accelerator Laboratory.

Wechsler is interested in the process of galaxy formation, the development of universal structure, and what these can tell us about the fundamental physics of the universe. Naturally, dark energy and dark matter enter the equation when one is considering galactic formation and there are few better keys to probing these concepts than data generated from the SDSS.

Just as the Sloan Digital Sky Survey presented several new data storage and computational challenges, so too do the efforts to extract meaningful discoveries. Teasing apart important information for simulations and analysis generates its own string of terabytes on top of the initial SDSS data. This creates a dark matter of its own for computer scientists as they struggle to keep pace with ever-expanding volumes that are outpacing the capability of the systems designed to handle them.

Wechsler’s team used the project’s astronomical data to make comparisons in the relative luminosity of millions of galaxies to our own Milky Way. All told, the project took images of nearly one-quarter of the sky, creating its own data challenges. The findings revealed that galaxies with two satellites that are nearby with large and small Magellanic clouds are highly unique — only about four percent of galaxies have similarities to the Milky Way.

To arrive at their conclusions, the group downloaded all of the publicly available Sloan data and began looking for satellite galaxies around the Milky Way, combing through about a million galaxies with spectroscopy to select a mere 20,000 with luminosity similar to that of our own galaxy. With these select galaxies identified, they undertook the task of mining those images for evidence of nearby fainter galaxies via a random review method. As Wechsler noted, running on the Pleiades supercomputer at NASA Ames, it took roughly 6.5 million CPU hours to run a simulation of a region of the universe done with 8 billion particles, making it one of the largest simulations that has ever been done in terms of particle numbers. She said that when you move to smaller box sizes it takes a lot more CPU time per particle because the universe is more clustered on smaller scales.

Wechsler described the two distinct pipelines required for this type of reserach. First, there’s the simulation in which researchers spend time looking for galaxies in a model universe. Wechsler told us that this simulation was done on the Pleiades machine at Ames across 10,000 CPUs. From there, the team performed an analysis of this simulation, which shows the evolution of structure formations on the piece of the universe across its entire history of almost 14 billion years — a process that involves the examination of dark matter halo histories across history. As she noted, the team was “looking for gravitationally bound clumps in that dark matter distribution; you have a distribution of matter at a given time and you want to find the peaks in that density distribution since that is where we expect galaxies to form. We were looking for those types of peas across the 200 snapshots we tool to summarize that entire 14 billion year period.”

The team needed to understand the evolutionary processes that occurred between the many billions of years captured in 200 distinct moments. This meant they had to trace the particles from one snapshot to the next in their clumps, which are called dark matter halos. Once the team found the halos, which again, are associated with galaxy formation, they did a statistical analysis that sought out anything that looked like our own Milky Way. Wechsler told is that “the volume of the simulation was comparable to the volume of the data that we were looking at. Out of the 8 million or so total clumps in our simulation we found our set of 20,000 that looked like possibilities to compare to the Milky Way. By looking for fainter things around them — and remember there are a lot more faint things than bright ones — we were looking for many, many possibilities at one time.”

The computational challenges are abundant in a project like this Wechsler said. Out of all bottlenecks, storage has been the most persistent, although she noted that as of now there are no real solutions to these problems.

Aside from bottlenecks due to the massive storage requirements, Wechsler said that the other computational challenge was that even though this project represented one of the highest resolution simulations at such a volume, they require more power. She said that although they can do larger simulation in a lower resolution, getting the full dynamic range of the calculation is critical. This simulation breaks new ground in terms of being able to simulate Magellenic cloud size objects over a large volume, but it’s still smaller than the volume that the observations are able to probe. This means that scaling this kind calculation up to the next level is a major challenge, especially as Wechsler embarks on new projects.

“Our data challenges are the same as those in many other fields that are tackling multiscale problems. We have a wide dynamic range of statistics to deal with but what did enable us to do this simulation is being able to resolve many small objects in a large volume. For this and other research projects, having a wide dynamic range of scales is crucial so some of our lessons can certainly be carried over to other fields.”

As Alex Szalay friom the Johns Hopkins University Department of Physics and Astonomy noted, this is a prime example of the kinds of big data problems that researchers in astrophysics and other fields are facing. They are, as he told us, “forced to make tradoffs when they enter the extreme scale” and need to find ways to manage both storage and CPU resources so that these tradeoffs have the least possible impact on the overall time to solutions. Dr. Szalay addressed some of the specific challenges involved in Wechsler’s project in a recent presentation called “Extreme Databases-Centric Scientific Computing.” In the presentation he addresses the new scalable architectures required for data-intensive scientific applications, looking at the databases as the root point to begin exploring new solutions.

For the dark energy survey, the team will take images of about one-eighth of the sky going back seven billion years. The large synoptic survey telescope, which is currently being built will take images of the half the sky every three days and will provide even more faintness detection, detecting the brightest stars back to a few billion years after the big bang. One goal with this is to map where everything is in order to figure out what the universe is made of. Galaxy surveys help with this research because they can map the physics to large events via simulations to understand galactic evolution.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Career Notes (March 2017)

March 1, 2017

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Intel Sets High Bar with Workforce Diversity Program Results

February 28, 2017

Intel’s impressive efforts to achieve workforce diversity and compensation equality edged up yet another notch last year according to the company’s 2016 Diversity and Inclusion Report released today. Read more…

By John Russell

Battle Brews over Trump Intentions for Funding Science

February 27, 2017

The battle over science funding – how much and for what kinds of science – Read more…

By John Russell

Google Gets First Dibs on New Skylake Chips

February 27, 2017

As part of an ongoing effort to differentiate its public cloud services, Google made good this week on its intention to bring custom Xeon Skylake chips from Intel Corp. Read more…

By George Leopold

HPE Extreme Performance Solutions

Manufacturers Reaping the Benefits of Remote Visualization

Today’s manufacturers are operating in an ever-changing atmosphere, and finding new ways to boost productivity has never been more vital.

This is why manufacturers are ramping up their investments in high performance computing (HPC), a trend which has helped give rise to the “connected factory” and Industrial Internet of Things (IIoT) concepts that are proliferating throughout the industry today. Read more…

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This