Lighting a Fire Under Combustion Simulation

By Michael Feldman

June 1, 2011

Combustion simulation might seem like the ultimate in esoteric technologies, but auto companies, aircraft firms and fuel designers need increasingly sophisticated software to serve the needs of 21st century engine designs. And as government and industry demand better fuel efficiency and cleaner emissions, combustion software has become a hot topic.

HPCwire recently got the opportunity to take a look at Reaction Design, one of the premier makers of combustion simulation software, and talk with its CEO, Bernie Rosenthal.

A privately-funded company based in San Diego, Reaction Design has been around since 1995 and today employs about 30 people. Its claim to fame is providing state-of-the-art combustion simulation by bringing high-fidelity computational chemistry into the realm of computational fluid dynamics (CFD).

As with many types of computer aided engineering, the idea behind combustion simulation is to allow companies to replace millions of dollars in physical mockups and experiments with software models. According to Rosenthal, that requires sophisticated algorithms plus an intimate understanding of the different types of engines and fuels used by industry. The goal is to predict the thermodynamic behavior of combustion as well as the undesirable byproducts — carbon soot, nitrous oxide compounds (NOx), unburnt hydrocarbons, and carbon monoxide.

As far as the chemistry goes, Reaction Design developed its core competency early on. A couple of years after it was founded, the company acquired exclusive rights to a chemistry kinetics solver from Sandia National Laboratories, which the lab had developed to simulate rocket plumes and missile reactor designs. In conjunction with the software, Reaction Design picked up some of the key Sandia developers and brought them on-board. The solver was subsequently productized into CHEMKIN, the package that forms the basis of most of Reaction Design’s software offerings.

What sets Reaction Design apart is their ability to combine their computational chemistry codes with third-party CFD packages for combustion simulation. According to Rosenthal, they are the only vendor that combines the two components with a level of detail that he refers to as “real fuel modeling.”

Engine fuels are not simple formulations. Even refined gasoline is made up of thousands of different molecules that interact with each other during the combustion process. “Over the last 15 years that CFD has been available, most simulations have been approximating that fuel as one molecule,” notes Rosenthal. In general, he says, those simple simulations have worked. At least they did a good enough job to provide a 90 percent reduction in undesirable byproducts.

But emission standards now mandate combustion byproducts in the parts-per-million or even parts-per-billion range, which can be an expensive proposition for the end user. For example, a $65 thousand diesel engine could require a $15,000 after-treatment system just to deal with undesirable tailpipe emissions. In addition, the need for better fuel efficiency as well as the changing nature of the fuel itself — which can be anything from standard gasoline, to diesel, ethanol, liquified natural gas, biodiesel, propane, rapeseed oil, or some combination thereof — necessitates a more complex engine design.

To model all this in software requires a lot of number crunching. That’s especially true in the realm of turbine engines, which have very large geometries. Even with the benefit of parallelization on a medium-sized cluster with a dozen or two CPUs, a CFD simulation using a multi-million cell computational mesh requires multiple days of run-time execution — and that’s without any complex chemistry involved. “These guys were taking around a week to get an answer for a single cycle of the combustor,” says Rosenthal.

Reaction Design’s initial approach for the turbine engine community was to hook their existing chemistry solver onto CFD codes like FLUENT, STAR-CD and CFX, which are the ones most commonly used by manufacturers. Essentially they mapped the chemistry kinetics onto the CFD by splitting the combustion into a number of distinct regions, applying the chemistry to the CFD output, and then aggregating the results. The ensuing product, ENERGICO, is now used by a number of turbine firms, including the world’s largest gas turbine manufacturer for aircraft and power generation.

The problem was that this approach didn’t really offer true CFD-chemistry integration, and that is what automobile companies and other internal combustion engine manufacturers were demanding. This sector has traditionally looked to HPC to reduce compute times and increase capability by running their simulations on ever-larger and more powerful clusters. In general, simulation times for a combustion cycle were in the 8 to 12 hour range, meaning designers could initiate on an overnight run and analyze the results in the morning.

But newer engine designs, more complex injection and pressure schemes, and stricter emission requirements meant the simulations would have to do a lot more computation. Not only did the manufacturers want real fuel chemistry to be a part of this, they also wanted to keep their half-day simulation times.

Unfortunately, such chemistry is quite compute-intensive. According to Rosenthal, 80 to 90 percent of the run-time was going to be spent in the chemistry computation if they used their existing algorithms. So the Reaction Design developers took a second look at their software and were able to squeeze a 10-fold improvement in the algorithmic performance.

But even that wasn’t enough to keep the simulation run-times in the overnight realm. To accomplish that, they needed to parallelize their algorithms, which they did in typical MPI fashion. By doing so, users could scale the chemistry computation linearly just by adding more compute nodes, at least for moderate-sized clusters.

The second part to the solution was to merge the chemistry and CFD codes. There was just one problem: Reaction Design had no in-house CFD code, so they had to develop their own. The company now offers this as a standalone product called CHEMKIN CFD.

But the chemistry-integrated version, called FORTE, was the real breakthrough. It’s a complete HPC solution that supports advanced, 3D internal combustion engine design with real fuel chemistry hooked into a CFD solver. FORTE was officially announced in April, and a number of large auto firms in the US, Europe and Japan have already signed on, says Rosenthal.

FORTE may well scale up into hundreds of nodes, which would put simulation run-times into the 60-minute realm. But most manufacturers would probably use such large clusters to run multiple simulations using different parameters, rather than opt for shorter turnarounds on a single design run. The company’s next step is to see if they can scale their integrated CFD-chemistry approach to the larger geometries of the turbine engine, and offer a FORTE-like product for that industry.

Beyond that, Rosenthal is looking at GPU computing to further accelerate their codes. At this point, he’s wondering if he should invest development cycles in CUDA or OpenCL technology or wait for higher-level development tools to offer a more transparent way to tap into GPUs. Like most developers, he would rather the compiler and runtime do the heavy lifting in order to simplify any GPU-specific source code changes on his part. “But the real question to me is: what do my customers have?” says Rosenthal. “And they don’t have these… yet.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This