A Healthy Dose of Analytics: From IBM Watson to Tricorders

By Michael Feldman

June 2, 2011

If you’ve been following the health care debate in the US, it’s become fairly clear that the current trajectory of medical costs will soon be unsustainable for the economy. The latest government figures has the average US health care spend per person at over $8,000, and is projected to top $13,000 by 2018. Whether the latest health care legislation will do much to curb these costs is debatable.

If that $13,000 per capita figure holds up, that means about 20 percent of the nation’s GDP will be spent on medical bills. Other developed nations are currently about twice as efficient as the US, but even there health care cost are outrunning incomes. Fortunately, economic forces that strong have a way of disrupting the status quo.

Probably the lowest hanging fruit for optimizing the health care sector is in information technology. Even though we think of medicine as a high-tech endeavor, it’s mostly based on 30-year-old IT infrastructure overlaid with a manual labor approach to data collection and analysis. Essentially we have a system using 20th century computing technology, but with 21st century wages.

Just going to a doctor’s office and filling out a medical history form (on paper!) for the 100th time should give you some idea of how antiquated the health care industry has become. It’s as if the Internet was never invented.

But it’s not just about your medical records ending up in isolated silos. The amount of data that can be applied to your health is actually growing by leaps and bounds. The results of medical research, genomic studies, and clinical drug trials are accumulating at an exponential rate. Like most sectors nowadays, health care revolves around data.

In general though, your health care provider doesn’t do anything with all this information since the analysis has to done by a time-constrained, high-paid specialist, i.e., your doctor. But that could soon change. The latest advanced analytics technologies are looking to mine these rich medical data repositories and transform the nature of health care forever. Not surprisingly, IT companies are lining up to get a piece of the action.

IBM, in particular, has been pushing its analytics story for all sorts of medical applications. Last week, the compay announced it was expanding its Dallas-based Health Analytics Solution Center with additional people and technology.

Part of this is about sliding the IBM Watson supercomputing technology into a medical setting. With it’s impressive Jeopardy performance under its belt, IBM is now applying HPC-type analytics to understand medical text. Specifically, they want to combine Watson’s smarts with voice recognition technology from Nuance Communications to connect doctors to their patients’ medical data via a handheld device like a tablet or smart phone. From the press release:

By using analytics to determine hidden meaning buried in medical records, pathology reports, images and comparative data, computers can extract relevant patient data and present it to physicians, ultimately leading to improved patient care.

Analytics vendor SAS is also in the game. In May, they unveiled a new Center for Health Analytics and Insights organization that is designed to apply advanced analytics across health care and life sciences. Although the specifics were a little thin, the group will focus on “evidence-based medicine, adaptive clinical research, cost mitigation and many aspects of customer intelligence.”

It’s not all about clinical care though. One of the most expensive undertakings of the health care industry is ensuring drug safety. Both the FDA and pharma have had some spectacular failures in this area, the most recent being Vioxx, a pain-relief drug that was pulled from the market in 2004 after it was discovered that it was causing strokes and heart attacks in some patients.

A recent study by the RAND Corporation suggests data mining can be used to find some of these dangerous drugs before they enter into widespread usage. RAND CTO Siddhartha Dalal and researcher Kanaka Shetty developed an algorithm to search the PubMed database to uncover these bad players. The software employed machine learning algorithms in order to provide the sophistication necessary to differentiate truly dangerous compounds from ones that only looked suspicious (false positives). According to the authors, the algorithm uncovered 54 percent of all detected FDA warnings using just the literature published before warnings were issued.

A more ambitious medical technology is envisioned by the X PRIZE Foundation, a non-profit devoted to encouraging revolutionary technologies. Recently they teamed with Qualcomm to come up with the Tricorder X PRIZE, offering a $10 million award to develop “a mobile solution that can diagnose patients better than or equal to a panel of board certified physicians.” In other words, make the Star Trek tricorder a reality.

The device is intended to bring together wireless sensors, cloud computing, and other technologies to perform the initial diagnosis, and direct them to a “real” doctor if the situation warrants. Presumably the cloud computing component will support the necessary data mining and expert system intelligence, while the tricorder itself would mostly act as the data collection interface and do some medical imaging perhaps. The X PRIZE Foundation will publish the specific design requirements later this year, with the competition expected to launch in 2012.

None of these solutions are being promoted as substitutes for doctors or other medical professionals. Inevitably though, if these technologies become established, these jobs will be very different. With powerful analytics available, doctors won’t have to memorize all the information about the biology, drugs, and medical procedures any more. In truth, they can’t even do that today; there is already far too much data, and it continues to expand.

In an analytics-supported health care system, medical practitioners will need to do less data collection and analysis and more meta-data analysis. Just as today, writers don’t need to know how to spell words (remember, 50 years ago a spell checker was a person, not a piece of software) doctors will not need to memorize which drugs are applicable to which diseases. And that means a lot fewer doctor and less supporting staff. Essentially we’ll be replacing very expensive PhD’s with very cheap computer cycles.

If that seems like a scary prospect, consider the more frightening scenario of a health care system that bypassed this technology and tried to burden medical practitioners with the data deluge. Also consider that without advanced analytics, the majority of the population will be burdened by the long-term costs of sub-standard medical care.

Beyond that, advanced analytics will also be involved in propelling other health care technology forward, including drug discovery, genomics, and the whole field of personalized medicine. Many of these advances will enable medical conditions like heart disease, cancer and diabetes to be prevented, which is a far less expensive proposition than treatment.

It’s reasonable to be optimistic here. Nature abhors a vacuum — in fact, any sort of stark discontinuity. Our problematic health care model will eventually be transformed by technologies that make economic sense. Advanced analytics is poised to be a big part of this.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Ohio Supercomputing Center Dedicates ‘Owens’ Cluster

March 29, 2017

In a dedication ceremony held earlier today (March 29), officials from Ohio Supercomputing Center (OSC) along with state representatives gathered to celebrate the launch of OSC’s newest cluster: Read more…

By Tiffany Trader

EU Ratchets up the Race to Exascale Computing

March 29, 2017

The race to expand HPC infrastructure, including exascale machines, to advance national and regional interests ratcheted up a notch yesterday with announcement that seven European countries – Read more…

By John Russell

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging the Power of Big Data to Improve Customer Satisfaction & Brand Loyalty

In the dynamic world of retail, retailers must find ways to recognize and effectively respond to shopping behaviors, patterns, and trends in order to succeed. Read more…

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This