A Healthy Dose of Analytics: From IBM Watson to Tricorders

By Michael Feldman

June 2, 2011

If you’ve been following the health care debate in the US, it’s become fairly clear that the current trajectory of medical costs will soon be unsustainable for the economy. The latest government figures has the average US health care spend per person at over $8,000, and is projected to top $13,000 by 2018. Whether the latest health care legislation will do much to curb these costs is debatable.

If that $13,000 per capita figure holds up, that means about 20 percent of the nation’s GDP will be spent on medical bills. Other developed nations are currently about twice as efficient as the US, but even there health care cost are outrunning incomes. Fortunately, economic forces that strong have a way of disrupting the status quo.

Probably the lowest hanging fruit for optimizing the health care sector is in information technology. Even though we think of medicine as a high-tech endeavor, it’s mostly based on 30-year-old IT infrastructure overlaid with a manual labor approach to data collection and analysis. Essentially we have a system using 20th century computing technology, but with 21st century wages.

Just going to a doctor’s office and filling out a medical history form (on paper!) for the 100th time should give you some idea of how antiquated the health care industry has become. It’s as if the Internet was never invented.

But it’s not just about your medical records ending up in isolated silos. The amount of data that can be applied to your health is actually growing by leaps and bounds. The results of medical research, genomic studies, and clinical drug trials are accumulating at an exponential rate. Like most sectors nowadays, health care revolves around data.

In general though, your health care provider doesn’t do anything with all this information since the analysis has to done by a time-constrained, high-paid specialist, i.e., your doctor. But that could soon change. The latest advanced analytics technologies are looking to mine these rich medical data repositories and transform the nature of health care forever. Not surprisingly, IT companies are lining up to get a piece of the action.

IBM, in particular, has been pushing its analytics story for all sorts of medical applications. Last week, the compay announced it was expanding its Dallas-based Health Analytics Solution Center with additional people and technology.

Part of this is about sliding the IBM Watson supercomputing technology into a medical setting. With it’s impressive Jeopardy performance under its belt, IBM is now applying HPC-type analytics to understand medical text. Specifically, they want to combine Watson’s smarts with voice recognition technology from Nuance Communications to connect doctors to their patients’ medical data via a handheld device like a tablet or smart phone. From the press release:

By using analytics to determine hidden meaning buried in medical records, pathology reports, images and comparative data, computers can extract relevant patient data and present it to physicians, ultimately leading to improved patient care.

Analytics vendor SAS is also in the game. In May, they unveiled a new Center for Health Analytics and Insights organization that is designed to apply advanced analytics across health care and life sciences. Although the specifics were a little thin, the group will focus on “evidence-based medicine, adaptive clinical research, cost mitigation and many aspects of customer intelligence.”

It’s not all about clinical care though. One of the most expensive undertakings of the health care industry is ensuring drug safety. Both the FDA and pharma have had some spectacular failures in this area, the most recent being Vioxx, a pain-relief drug that was pulled from the market in 2004 after it was discovered that it was causing strokes and heart attacks in some patients.

A recent study by the RAND Corporation suggests data mining can be used to find some of these dangerous drugs before they enter into widespread usage. RAND CTO Siddhartha Dalal and researcher Kanaka Shetty developed an algorithm to search the PubMed database to uncover these bad players. The software employed machine learning algorithms in order to provide the sophistication necessary to differentiate truly dangerous compounds from ones that only looked suspicious (false positives). According to the authors, the algorithm uncovered 54 percent of all detected FDA warnings using just the literature published before warnings were issued.

A more ambitious medical technology is envisioned by the X PRIZE Foundation, a non-profit devoted to encouraging revolutionary technologies. Recently they teamed with Qualcomm to come up with the Tricorder X PRIZE, offering a $10 million award to develop “a mobile solution that can diagnose patients better than or equal to a panel of board certified physicians.” In other words, make the Star Trek tricorder a reality.

The device is intended to bring together wireless sensors, cloud computing, and other technologies to perform the initial diagnosis, and direct them to a “real” doctor if the situation warrants. Presumably the cloud computing component will support the necessary data mining and expert system intelligence, while the tricorder itself would mostly act as the data collection interface and do some medical imaging perhaps. The X PRIZE Foundation will publish the specific design requirements later this year, with the competition expected to launch in 2012.

None of these solutions are being promoted as substitutes for doctors or other medical professionals. Inevitably though, if these technologies become established, these jobs will be very different. With powerful analytics available, doctors won’t have to memorize all the information about the biology, drugs, and medical procedures any more. In truth, they can’t even do that today; there is already far too much data, and it continues to expand.

In an analytics-supported health care system, medical practitioners will need to do less data collection and analysis and more meta-data analysis. Just as today, writers don’t need to know how to spell words (remember, 50 years ago a spell checker was a person, not a piece of software) doctors will not need to memorize which drugs are applicable to which diseases. And that means a lot fewer doctor and less supporting staff. Essentially we’ll be replacing very expensive PhD’s with very cheap computer cycles.

If that seems like a scary prospect, consider the more frightening scenario of a health care system that bypassed this technology and tried to burden medical practitioners with the data deluge. Also consider that without advanced analytics, the majority of the population will be burdened by the long-term costs of sub-standard medical care.

Beyond that, advanced analytics will also be involved in propelling other health care technology forward, including drug discovery, genomics, and the whole field of personalized medicine. Many of these advances will enable medical conditions like heart disease, cancer and diabetes to be prevented, which is a far less expensive proposition than treatment.

It’s reasonable to be optimistic here. Nature abhors a vacuum — in fact, any sort of stark discontinuity. Our problematic health care model will eventually be transformed by technologies that make economic sense. Advanced analytics is poised to be a big part of this.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This