A Healthy Dose of Analytics: From IBM Watson to Tricorders

By Michael Feldman

June 2, 2011

If you’ve been following the health care debate in the US, it’s become fairly clear that the current trajectory of medical costs will soon be unsustainable for the economy. The latest government figures has the average US health care spend per person at over $8,000, and is projected to top $13,000 by 2018. Whether the latest health care legislation will do much to curb these costs is debatable.

If that $13,000 per capita figure holds up, that means about 20 percent of the nation’s GDP will be spent on medical bills. Other developed nations are currently about twice as efficient as the US, but even there health care cost are outrunning incomes. Fortunately, economic forces that strong have a way of disrupting the status quo.

Probably the lowest hanging fruit for optimizing the health care sector is in information technology. Even though we think of medicine as a high-tech endeavor, it’s mostly based on 30-year-old IT infrastructure overlaid with a manual labor approach to data collection and analysis. Essentially we have a system using 20th century computing technology, but with 21st century wages.

Just going to a doctor’s office and filling out a medical history form (on paper!) for the 100th time should give you some idea of how antiquated the health care industry has become. It’s as if the Internet was never invented.

But it’s not just about your medical records ending up in isolated silos. The amount of data that can be applied to your health is actually growing by leaps and bounds. The results of medical research, genomic studies, and clinical drug trials are accumulating at an exponential rate. Like most sectors nowadays, health care revolves around data.

In general though, your health care provider doesn’t do anything with all this information since the analysis has to done by a time-constrained, high-paid specialist, i.e., your doctor. But that could soon change. The latest advanced analytics technologies are looking to mine these rich medical data repositories and transform the nature of health care forever. Not surprisingly, IT companies are lining up to get a piece of the action.

IBM, in particular, has been pushing its analytics story for all sorts of medical applications. Last week, the compay announced it was expanding its Dallas-based Health Analytics Solution Center with additional people and technology.

Part of this is about sliding the IBM Watson supercomputing technology into a medical setting. With it’s impressive Jeopardy performance under its belt, IBM is now applying HPC-type analytics to understand medical text. Specifically, they want to combine Watson’s smarts with voice recognition technology from Nuance Communications to connect doctors to their patients’ medical data via a handheld device like a tablet or smart phone. From the press release:

By using analytics to determine hidden meaning buried in medical records, pathology reports, images and comparative data, computers can extract relevant patient data and present it to physicians, ultimately leading to improved patient care.

Analytics vendor SAS is also in the game. In May, they unveiled a new Center for Health Analytics and Insights organization that is designed to apply advanced analytics across health care and life sciences. Although the specifics were a little thin, the group will focus on “evidence-based medicine, adaptive clinical research, cost mitigation and many aspects of customer intelligence.”

It’s not all about clinical care though. One of the most expensive undertakings of the health care industry is ensuring drug safety. Both the FDA and pharma have had some spectacular failures in this area, the most recent being Vioxx, a pain-relief drug that was pulled from the market in 2004 after it was discovered that it was causing strokes and heart attacks in some patients.

A recent study by the RAND Corporation suggests data mining can be used to find some of these dangerous drugs before they enter into widespread usage. RAND CTO Siddhartha Dalal and researcher Kanaka Shetty developed an algorithm to search the PubMed database to uncover these bad players. The software employed machine learning algorithms in order to provide the sophistication necessary to differentiate truly dangerous compounds from ones that only looked suspicious (false positives). According to the authors, the algorithm uncovered 54 percent of all detected FDA warnings using just the literature published before warnings were issued.

A more ambitious medical technology is envisioned by the X PRIZE Foundation, a non-profit devoted to encouraging revolutionary technologies. Recently they teamed with Qualcomm to come up with the Tricorder X PRIZE, offering a $10 million award to develop “a mobile solution that can diagnose patients better than or equal to a panel of board certified physicians.” In other words, make the Star Trek tricorder a reality.

The device is intended to bring together wireless sensors, cloud computing, and other technologies to perform the initial diagnosis, and direct them to a “real” doctor if the situation warrants. Presumably the cloud computing component will support the necessary data mining and expert system intelligence, while the tricorder itself would mostly act as the data collection interface and do some medical imaging perhaps. The X PRIZE Foundation will publish the specific design requirements later this year, with the competition expected to launch in 2012.

None of these solutions are being promoted as substitutes for doctors or other medical professionals. Inevitably though, if these technologies become established, these jobs will be very different. With powerful analytics available, doctors won’t have to memorize all the information about the biology, drugs, and medical procedures any more. In truth, they can’t even do that today; there is already far too much data, and it continues to expand.

In an analytics-supported health care system, medical practitioners will need to do less data collection and analysis and more meta-data analysis. Just as today, writers don’t need to know how to spell words (remember, 50 years ago a spell checker was a person, not a piece of software) doctors will not need to memorize which drugs are applicable to which diseases. And that means a lot fewer doctor and less supporting staff. Essentially we’ll be replacing very expensive PhD’s with very cheap computer cycles.

If that seems like a scary prospect, consider the more frightening scenario of a health care system that bypassed this technology and tried to burden medical practitioners with the data deluge. Also consider that without advanced analytics, the majority of the population will be burdened by the long-term costs of sub-standard medical care.

Beyond that, advanced analytics will also be involved in propelling other health care technology forward, including drug discovery, genomics, and the whole field of personalized medicine. Many of these advances will enable medical conditions like heart disease, cancer and diabetes to be prevented, which is a far less expensive proposition than treatment.

It’s reasonable to be optimistic here. Nature abhors a vacuum — in fact, any sort of stark discontinuity. Our problematic health care model will eventually be transformed by technologies that make economic sense. Advanced analytics is poised to be a big part of this.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This