A Healthy Dose of Analytics: From IBM Watson to Tricorders

By Michael Feldman

June 2, 2011

If you’ve been following the health care debate in the US, it’s become fairly clear that the current trajectory of medical costs will soon be unsustainable for the economy. The latest government figures has the average US health care spend per person at over $8,000, and is projected to top $13,000 by 2018. Whether the latest health care legislation will do much to curb these costs is debatable.

If that $13,000 per capita figure holds up, that means about 20 percent of the nation’s GDP will be spent on medical bills. Other developed nations are currently about twice as efficient as the US, but even there health care cost are outrunning incomes. Fortunately, economic forces that strong have a way of disrupting the status quo.

Probably the lowest hanging fruit for optimizing the health care sector is in information technology. Even though we think of medicine as a high-tech endeavor, it’s mostly based on 30-year-old IT infrastructure overlaid with a manual labor approach to data collection and analysis. Essentially we have a system using 20th century computing technology, but with 21st century wages.

Just going to a doctor’s office and filling out a medical history form (on paper!) for the 100th time should give you some idea of how antiquated the health care industry has become. It’s as if the Internet was never invented.

But it’s not just about your medical records ending up in isolated silos. The amount of data that can be applied to your health is actually growing by leaps and bounds. The results of medical research, genomic studies, and clinical drug trials are accumulating at an exponential rate. Like most sectors nowadays, health care revolves around data.

In general though, your health care provider doesn’t do anything with all this information since the analysis has to done by a time-constrained, high-paid specialist, i.e., your doctor. But that could soon change. The latest advanced analytics technologies are looking to mine these rich medical data repositories and transform the nature of health care forever. Not surprisingly, IT companies are lining up to get a piece of the action.

IBM, in particular, has been pushing its analytics story for all sorts of medical applications. Last week, the compay announced it was expanding its Dallas-based Health Analytics Solution Center with additional people and technology.

Part of this is about sliding the IBM Watson supercomputing technology into a medical setting. With it’s impressive Jeopardy performance under its belt, IBM is now applying HPC-type analytics to understand medical text. Specifically, they want to combine Watson’s smarts with voice recognition technology from Nuance Communications to connect doctors to their patients’ medical data via a handheld device like a tablet or smart phone. From the press release:

By using analytics to determine hidden meaning buried in medical records, pathology reports, images and comparative data, computers can extract relevant patient data and present it to physicians, ultimately leading to improved patient care.

Analytics vendor SAS is also in the game. In May, they unveiled a new Center for Health Analytics and Insights organization that is designed to apply advanced analytics across health care and life sciences. Although the specifics were a little thin, the group will focus on “evidence-based medicine, adaptive clinical research, cost mitigation and many aspects of customer intelligence.”

It’s not all about clinical care though. One of the most expensive undertakings of the health care industry is ensuring drug safety. Both the FDA and pharma have had some spectacular failures in this area, the most recent being Vioxx, a pain-relief drug that was pulled from the market in 2004 after it was discovered that it was causing strokes and heart attacks in some patients.

A recent study by the RAND Corporation suggests data mining can be used to find some of these dangerous drugs before they enter into widespread usage. RAND CTO Siddhartha Dalal and researcher Kanaka Shetty developed an algorithm to search the PubMed database to uncover these bad players. The software employed machine learning algorithms in order to provide the sophistication necessary to differentiate truly dangerous compounds from ones that only looked suspicious (false positives). According to the authors, the algorithm uncovered 54 percent of all detected FDA warnings using just the literature published before warnings were issued.

A more ambitious medical technology is envisioned by the X PRIZE Foundation, a non-profit devoted to encouraging revolutionary technologies. Recently they teamed with Qualcomm to come up with the Tricorder X PRIZE, offering a $10 million award to develop “a mobile solution that can diagnose patients better than or equal to a panel of board certified physicians.” In other words, make the Star Trek tricorder a reality.

The device is intended to bring together wireless sensors, cloud computing, and other technologies to perform the initial diagnosis, and direct them to a “real” doctor if the situation warrants. Presumably the cloud computing component will support the necessary data mining and expert system intelligence, while the tricorder itself would mostly act as the data collection interface and do some medical imaging perhaps. The X PRIZE Foundation will publish the specific design requirements later this year, with the competition expected to launch in 2012.

None of these solutions are being promoted as substitutes for doctors or other medical professionals. Inevitably though, if these technologies become established, these jobs will be very different. With powerful analytics available, doctors won’t have to memorize all the information about the biology, drugs, and medical procedures any more. In truth, they can’t even do that today; there is already far too much data, and it continues to expand.

In an analytics-supported health care system, medical practitioners will need to do less data collection and analysis and more meta-data analysis. Just as today, writers don’t need to know how to spell words (remember, 50 years ago a spell checker was a person, not a piece of software) doctors will not need to memorize which drugs are applicable to which diseases. And that means a lot fewer doctor and less supporting staff. Essentially we’ll be replacing very expensive PhD’s with very cheap computer cycles.

If that seems like a scary prospect, consider the more frightening scenario of a health care system that bypassed this technology and tried to burden medical practitioners with the data deluge. Also consider that without advanced analytics, the majority of the population will be burdened by the long-term costs of sub-standard medical care.

Beyond that, advanced analytics will also be involved in propelling other health care technology forward, including drug discovery, genomics, and the whole field of personalized medicine. Many of these advances will enable medical conditions like heart disease, cancer and diabetes to be prevented, which is a far less expensive proposition than treatment.

It’s reasonable to be optimistic here. Nature abhors a vacuum — in fact, any sort of stark discontinuity. Our problematic health care model will eventually be transformed by technologies that make economic sense. Advanced analytics is poised to be a big part of this.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

Addison Snell: The ‘Wild West’ of HPC Disaggregation

December 16, 2016

We caught up with Addison Snell, CEO of HPC industry watcher Intersect360, at SC16 last month, and Snell had his expected, extensive list of insights into trends driving advanced-scale technology in both the commercial and research sectors. Read more…

By Doug Black

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This