Computing Personal Genomics

By Nicole Hemsoth

June 2, 2011

Personal genomics is critical to advancing our ability to treat and preemptively diagnose genetic diseases. However, despite the possibilities of personalizing medicine, it remains tethered, in large part, to the weight of some significant computational-side problems. This includes everything from storage to compute to code, all of which were issues on the table at the National Center for Supercomputing Applications’ (NCSA) Private Sector Program Annual Meeting .

During the event, Dr. Victor Jongeneel, Senior Research Scientist at NCSA and the Institute for Genomic Biology at the University of Illinois detailed some of the bottlenecks and potential solutions that keep expectations for personal genomics grounded.

In the case of personal genomics, the problem is not the scientific understanding of the genome itself, it’s how to reconstruct, compare and make sense of the massive data from sequencers. He claims that the disruptive part of this technology as a whole is rooted in our ability to actually acquire the data. According to Jongeneel, the amount of DNA sequence data generated last year was more than what had been generated over the entire history of sequencing before that.

Personal genomics is anything but a reality right now Jongeneel says. He notes that the range of new services that offer to sequence your genome for a few hundred dollars are far from complete service. These simply take DNA from a saliva kit, probe for a certain number of positions in genomes that are known to be variable and then try to deduce personal characteristics from that information. He claims that this is not personal genomics because in such a case, all you’re examining are known differences between individuals in the population—not your own genome. Besides, to do what is required for a genuine look at one’s personal genomics is far more computationally-intensive and would entail far more than a measly few hundred dollars.

To realize true personal genomics, all differences between individuals need to be analyzed. Jongeneel explained that we are moving toward this more comprehensive genomic sampling via well-funded projects like the 1000 Genomes Initiative, which aims to allow the generation of all necessary data for $1000. He says this soon will be possible but again the computational bottlenecks are the main limitation.

Jongeneel cites three of the main technology vendors that are providing next-generation sequencing and says that while their approaches differ, on average, for a sequenced genome they’re running for 8 days for 200 gigabases worth of information. This translates into well over one terabyte per human genome.

When it’s human genomes sequences are the result of several hundred million (or even a billion) reads—a number that depends on the technology vendor. From there, researchers need to determine where they come from in the genome relative to common reference genomes. This “simple” alignment process whereby the individual genome is compared via alignment with the reference genome is incredibly demanding computationally—as is the next step where one must interpret this alignment to document individual differences and to make sure there is consistency.

Jongeneel says that this alignment step typically takes several days just for the processing of a single sample as it is aligned to the reference genome. To further complicate the process, we all have pieces of DNA that aren’t necessarily found in the DNA of others. While these are small differences he says these can make a very big difference. Analysis of these unique pieces require a complete piecing together of individual reads to allow researchers to see what the larger structure of the genome might look like. And it gets even more demanding.

Rebuilding genomes requires the construction of highly complex graphs, which itself is a strain on computational resources. This is even more demanding when one must disambiguate the graph to make sense of it in terms of an actual genome sequence. After all, there are pieces of sequence rolling off the machines that are on the order of between 75-100 nucleotides long—and you’re trying to reconstitute genomes that are in the millions or billions of nucleotides long. This is the scientific equivalent of fitting a cell-sized piece into a massive tabletop puzzle.

More concretely than the puzzle image, consider this: Jongeneel says that if you wanted to reconstruct an entire genome from this kind of information you’re talking about the construction of a graph would likely have over 3 billon nodes with in excess of 10 billion edges to it. This is, of course, assuming there are no errors in your data which, he apologizes, there probably are. The raw time taken for an algorithm on a medium-sized cluster the assembly properly takes several weeks for each genome.

Jongeneel says that this is the kind of bottleneck that prevents some interesting genomic projects from taking off. For instance, there is currently an effort to sequence the entire range of DNA for several hundred common vertebrates. However, storing that information and spending several weeks for each individual species makes that out of reach—for now, at least. He says that there is hope on the horizon, but it is going to take a rethinking of code and computing.

He says that the problem lies, in large part, in the software itself. His team ran a test on the widely-used genome assembler ABySS, which has broad appeal since it uses MPI and can leverage a much-needed cluster environment. They undertook assembly for a modest-sized genome of a yeast and noted that it was clear, based on wall clock and memory requirements, that this was not a scalable code.

He says this hints at a much deeper problem—many of those developing genomics software aren’t professional developers. Even though they integrate some complex algorithmic ideas, the code they write “isn’t up to the standards of the HPC community.”

He commented on this further, saying that what is needed most is a highly parallel genome assembler. He pointed to some progress in the arena from a group at Iowa State but says that unfortunately, “their software is not in the public domain so it isn’t available, we can’t test it and it’s not in the community.”

A representative from Microsoft in the audience asked Jongeneel about what the solution might be to this problem, inquiring if it was a simple need for more parallel programmers, better tools or languages for developing these, or some other new type of scalable solution. Jongeneel responded that since most of the code being produced is research grade and the technology moves so quickly that it renders “new” code obsolete in very little time. He says that commercial attempts have failed for the same reason—as soon as they’ve produced a viable, scalable solution they’ve been left behind by the swift movement toward new solutions.

Jongeneel said that if you think about personal genomics, if we even wanted to move toward the goal of one million people, we’re going to hit the exabyte range in no time. He feels that in addition these datasets need to be analyzed using workflows with multiple complex steps, thus we require a fundamental rethinking of compute architectures that can enable this kind of research.

That aside, he claims that one side question is what we should do with the massive amount of raw data that is valuable for future research (and sometimes legally sticky to dispose of now anyway). With this raw data in vast volume he says that extraction of ‘relevant’ information is the problem. Jongeneel notes, Data analytics and pattern discovery on large numbers of genomes will be required to produce meaningful results.

View full video from Jongeneel’s talk here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This