Computing Personal Genomics

By Nicole Hemsoth

June 2, 2011

Personal genomics is critical to advancing our ability to treat and preemptively diagnose genetic diseases. However, despite the possibilities of personalizing medicine, it remains tethered, in large part, to the weight of some significant computational-side problems. This includes everything from storage to compute to code, all of which were issues on the table at the National Center for Supercomputing Applications’ (NCSA) Private Sector Program Annual Meeting .

During the event, Dr. Victor Jongeneel, Senior Research Scientist at NCSA and the Institute for Genomic Biology at the University of Illinois detailed some of the bottlenecks and potential solutions that keep expectations for personal genomics grounded.

In the case of personal genomics, the problem is not the scientific understanding of the genome itself, it’s how to reconstruct, compare and make sense of the massive data from sequencers. He claims that the disruptive part of this technology as a whole is rooted in our ability to actually acquire the data. According to Jongeneel, the amount of DNA sequence data generated last year was more than what had been generated over the entire history of sequencing before that.

Personal genomics is anything but a reality right now Jongeneel says. He notes that the range of new services that offer to sequence your genome for a few hundred dollars are far from complete service. These simply take DNA from a saliva kit, probe for a certain number of positions in genomes that are known to be variable and then try to deduce personal characteristics from that information. He claims that this is not personal genomics because in such a case, all you’re examining are known differences between individuals in the population—not your own genome. Besides, to do what is required for a genuine look at one’s personal genomics is far more computationally-intensive and would entail far more than a measly few hundred dollars.

To realize true personal genomics, all differences between individuals need to be analyzed. Jongeneel explained that we are moving toward this more comprehensive genomic sampling via well-funded projects like the 1000 Genomes Initiative, which aims to allow the generation of all necessary data for $1000. He says this soon will be possible but again the computational bottlenecks are the main limitation.

Jongeneel cites three of the main technology vendors that are providing next-generation sequencing and says that while their approaches differ, on average, for a sequenced genome they’re running for 8 days for 200 gigabases worth of information. This translates into well over one terabyte per human genome.

When it’s human genomes sequences are the result of several hundred million (or even a billion) reads—a number that depends on the technology vendor. From there, researchers need to determine where they come from in the genome relative to common reference genomes. This “simple” alignment process whereby the individual genome is compared via alignment with the reference genome is incredibly demanding computationally—as is the next step where one must interpret this alignment to document individual differences and to make sure there is consistency.

Jongeneel says that this alignment step typically takes several days just for the processing of a single sample as it is aligned to the reference genome. To further complicate the process, we all have pieces of DNA that aren’t necessarily found in the DNA of others. While these are small differences he says these can make a very big difference. Analysis of these unique pieces require a complete piecing together of individual reads to allow researchers to see what the larger structure of the genome might look like. And it gets even more demanding.

Rebuilding genomes requires the construction of highly complex graphs, which itself is a strain on computational resources. This is even more demanding when one must disambiguate the graph to make sense of it in terms of an actual genome sequence. After all, there are pieces of sequence rolling off the machines that are on the order of between 75-100 nucleotides long—and you’re trying to reconstitute genomes that are in the millions or billions of nucleotides long. This is the scientific equivalent of fitting a cell-sized piece into a massive tabletop puzzle.

More concretely than the puzzle image, consider this: Jongeneel says that if you wanted to reconstruct an entire genome from this kind of information you’re talking about the construction of a graph would likely have over 3 billon nodes with in excess of 10 billion edges to it. This is, of course, assuming there are no errors in your data which, he apologizes, there probably are. The raw time taken for an algorithm on a medium-sized cluster the assembly properly takes several weeks for each genome.

Jongeneel says that this is the kind of bottleneck that prevents some interesting genomic projects from taking off. For instance, there is currently an effort to sequence the entire range of DNA for several hundred common vertebrates. However, storing that information and spending several weeks for each individual species makes that out of reach—for now, at least. He says that there is hope on the horizon, but it is going to take a rethinking of code and computing.

He says that the problem lies, in large part, in the software itself. His team ran a test on the widely-used genome assembler ABySS, which has broad appeal since it uses MPI and can leverage a much-needed cluster environment. They undertook assembly for a modest-sized genome of a yeast and noted that it was clear, based on wall clock and memory requirements, that this was not a scalable code.

He says this hints at a much deeper problem—many of those developing genomics software aren’t professional developers. Even though they integrate some complex algorithmic ideas, the code they write “isn’t up to the standards of the HPC community.”

He commented on this further, saying that what is needed most is a highly parallel genome assembler. He pointed to some progress in the arena from a group at Iowa State but says that unfortunately, “their software is not in the public domain so it isn’t available, we can’t test it and it’s not in the community.”

A representative from Microsoft in the audience asked Jongeneel about what the solution might be to this problem, inquiring if it was a simple need for more parallel programmers, better tools or languages for developing these, or some other new type of scalable solution. Jongeneel responded that since most of the code being produced is research grade and the technology moves so quickly that it renders “new” code obsolete in very little time. He says that commercial attempts have failed for the same reason—as soon as they’ve produced a viable, scalable solution they’ve been left behind by the swift movement toward new solutions.

Jongeneel said that if you think about personal genomics, if we even wanted to move toward the goal of one million people, we’re going to hit the exabyte range in no time. He feels that in addition these datasets need to be analyzed using workflows with multiple complex steps, thus we require a fundamental rethinking of compute architectures that can enable this kind of research.

That aside, he claims that one side question is what we should do with the massive amount of raw data that is valuable for future research (and sometimes legally sticky to dispose of now anyway). With this raw data in vast volume he says that extraction of ‘relevant’ information is the problem. Jongeneel notes, Data analytics and pattern discovery on large numbers of genomes will be required to produce meaningful results.

View full video from Jongeneel’s talk here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This