Computing Personal Genomics

By Nicole Hemsoth

June 2, 2011

Personal genomics is critical to advancing our ability to treat and preemptively diagnose genetic diseases. However, despite the possibilities of personalizing medicine, it remains tethered, in large part, to the weight of some significant computational-side problems. This includes everything from storage to compute to code, all of which were issues on the table at the National Center for Supercomputing Applications’ (NCSA) Private Sector Program Annual Meeting .

During the event, Dr. Victor Jongeneel, Senior Research Scientist at NCSA and the Institute for Genomic Biology at the University of Illinois detailed some of the bottlenecks and potential solutions that keep expectations for personal genomics grounded.

In the case of personal genomics, the problem is not the scientific understanding of the genome itself, it’s how to reconstruct, compare and make sense of the massive data from sequencers. He claims that the disruptive part of this technology as a whole is rooted in our ability to actually acquire the data. According to Jongeneel, the amount of DNA sequence data generated last year was more than what had been generated over the entire history of sequencing before that.

Personal genomics is anything but a reality right now Jongeneel says. He notes that the range of new services that offer to sequence your genome for a few hundred dollars are far from complete service. These simply take DNA from a saliva kit, probe for a certain number of positions in genomes that are known to be variable and then try to deduce personal characteristics from that information. He claims that this is not personal genomics because in such a case, all you’re examining are known differences between individuals in the population—not your own genome. Besides, to do what is required for a genuine look at one’s personal genomics is far more computationally-intensive and would entail far more than a measly few hundred dollars.

To realize true personal genomics, all differences between individuals need to be analyzed. Jongeneel explained that we are moving toward this more comprehensive genomic sampling via well-funded projects like the 1000 Genomes Initiative, which aims to allow the generation of all necessary data for $1000. He says this soon will be possible but again the computational bottlenecks are the main limitation.

Jongeneel cites three of the main technology vendors that are providing next-generation sequencing and says that while their approaches differ, on average, for a sequenced genome they’re running for 8 days for 200 gigabases worth of information. This translates into well over one terabyte per human genome.

When it’s human genomes sequences are the result of several hundred million (or even a billion) reads—a number that depends on the technology vendor. From there, researchers need to determine where they come from in the genome relative to common reference genomes. This “simple” alignment process whereby the individual genome is compared via alignment with the reference genome is incredibly demanding computationally—as is the next step where one must interpret this alignment to document individual differences and to make sure there is consistency.

Jongeneel says that this alignment step typically takes several days just for the processing of a single sample as it is aligned to the reference genome. To further complicate the process, we all have pieces of DNA that aren’t necessarily found in the DNA of others. While these are small differences he says these can make a very big difference. Analysis of these unique pieces require a complete piecing together of individual reads to allow researchers to see what the larger structure of the genome might look like. And it gets even more demanding.

Rebuilding genomes requires the construction of highly complex graphs, which itself is a strain on computational resources. This is even more demanding when one must disambiguate the graph to make sense of it in terms of an actual genome sequence. After all, there are pieces of sequence rolling off the machines that are on the order of between 75-100 nucleotides long—and you’re trying to reconstitute genomes that are in the millions or billions of nucleotides long. This is the scientific equivalent of fitting a cell-sized piece into a massive tabletop puzzle.

More concretely than the puzzle image, consider this: Jongeneel says that if you wanted to reconstruct an entire genome from this kind of information you’re talking about the construction of a graph would likely have over 3 billon nodes with in excess of 10 billion edges to it. This is, of course, assuming there are no errors in your data which, he apologizes, there probably are. The raw time taken for an algorithm on a medium-sized cluster the assembly properly takes several weeks for each genome.

Jongeneel says that this is the kind of bottleneck that prevents some interesting genomic projects from taking off. For instance, there is currently an effort to sequence the entire range of DNA for several hundred common vertebrates. However, storing that information and spending several weeks for each individual species makes that out of reach—for now, at least. He says that there is hope on the horizon, but it is going to take a rethinking of code and computing.

He says that the problem lies, in large part, in the software itself. His team ran a test on the widely-used genome assembler ABySS, which has broad appeal since it uses MPI and can leverage a much-needed cluster environment. They undertook assembly for a modest-sized genome of a yeast and noted that it was clear, based on wall clock and memory requirements, that this was not a scalable code.

He says this hints at a much deeper problem—many of those developing genomics software aren’t professional developers. Even though they integrate some complex algorithmic ideas, the code they write “isn’t up to the standards of the HPC community.”

He commented on this further, saying that what is needed most is a highly parallel genome assembler. He pointed to some progress in the arena from a group at Iowa State but says that unfortunately, “their software is not in the public domain so it isn’t available, we can’t test it and it’s not in the community.”

A representative from Microsoft in the audience asked Jongeneel about what the solution might be to this problem, inquiring if it was a simple need for more parallel programmers, better tools or languages for developing these, or some other new type of scalable solution. Jongeneel responded that since most of the code being produced is research grade and the technology moves so quickly that it renders “new” code obsolete in very little time. He says that commercial attempts have failed for the same reason—as soon as they’ve produced a viable, scalable solution they’ve been left behind by the swift movement toward new solutions.

Jongeneel said that if you think about personal genomics, if we even wanted to move toward the goal of one million people, we’re going to hit the exabyte range in no time. He feels that in addition these datasets need to be analyzed using workflows with multiple complex steps, thus we require a fundamental rethinking of compute architectures that can enable this kind of research.

That aside, he claims that one side question is what we should do with the massive amount of raw data that is valuable for future research (and sometimes legally sticky to dispose of now anyway). With this raw data in vast volume he says that extraction of ‘relevant’ information is the problem. Jongeneel notes, Data analytics and pattern discovery on large numbers of genomes will be required to produce meaningful results.

View full video from Jongeneel’s talk here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitive computing, memory-centric computing, high-speed communicat Read more…

By John Russell

US Seeks to Automate Video Analysis

January 16, 2018

U.S. military and intelligence agencies continue to look for new ways to use artificial intelligence to sift through huge amounts of video imagery in hopes of freeing analysts to identify threats and otherwise put their Read more…

By George Leopold

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitiv Read more…

By John Russell

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This