The Weekly Top Five

By Tiffany Trader

June 2, 2011

The Weekly Top Five features the five biggest HPC stories of the week, condensed for your reading pleasure. This week, we cover NERSC’s acceptance of its first petascale supercomputer, the potential for magnets to revolutionize computing; NCSA’s private sector supercomputer; the official debut of Australia’s MASSIVE supercomputer; and PRACE’s biggest supercomputing allocation yet.

NERSC Accepts ‘Hopper’ Supercomputer

The National Energy Research Scientific Computing Center (NERSC) has officially accepted its first petascale supercomputer. The Cray XE6 system was named “Hopper” in honor of the renowned American computer scientist Grace Murray Hopper. The supercomputer will benefit more than 4,000 researchers and will support advancements in the fields of wind energy, extreme weather, and materials science.

NERSC Director Kathy Yelick, commented on this latest achievement:

“We are very excited to make this unique petascale capability available to our users, who are working on some of the most important problems facing the scientific community and the world. With its 12-core AMD processor chips, the system reflects an aggressive step forward in the industry-wide trend toward increasing the core counts, combined with the latest innovations in high-speed networking from Cray. The result is a powerful instrument for science. Our goal at NERSC is to maximize performance across a broad set of applications, and by our metric, the addition of Hopper represents an impressive five-fold increase in the application capability of NERSC.”

NERSC is the U.S. Department of Energy’s primary high-performance computing facility for scientific research. A pictorial journey of the delivery and installation process can be found here.

Chameleon Magnets Hailed as Potential Game Changers

Researchers at the University at Buffalo (UB) are studying the behavior of magnets and exploring their potential to revolutionize the field of computing. The researchers are asking questions about the nature of magnets and whether it’s possible to control their behavior to create more versatile transistors.

In the current issue of Science, University at Buffalo researcher Igor Zutic, a theoretical physicist, together with fellow UB physicist John Cerne, discuss the results of a Japanese study that demonstrates the potential to turn a material’s magnetism on and off at room temperature.

The release explains the basis for the research:

A material’s magnetism is determined by a property all electrons possess: something called “spin.” Electrons can have an “up” or “down” spin, and a material is magnetic when most of its electrons possess the same spin. Individual spins are akin to tiny bar magnets, which have north and south poles.

Zutic explains that the ability to switch a magnet “on” or “off” is revolutionary, bringing with it the promise of magnet- or spin-based computing technology — called “spintronics.” Spintronics-based devices will store and process data by exploiting electrons’ “up” and “down” spins. These spin states are similar to the ones and zeros found in standard digital transmission, but the technology makes it possible for more data to be stored using less energy.

Chameleon magnets could set the stage for a new era in processor design, and according to the researchers, may one day bring about the “seamless integration of memory and logic by providing smart hardware that can be dynamically reprogrammed for optimal performance of a specific task.”

NCSA Brings Supercomputing to Industry with iForge

The National Center for Supercomputing Applications (NCSA) is launching a supercomputer, called iForge, which will be dedicated to the center’s industrial partners. Rolls-Royce, Boeing, and Caterpillar are few of the companies that will be putting this computer cycles to work on a range of modeling and simulation problems.

A 22-teraflop high-performance computing cluster, iForge employs 121 Dell servers and a mix of Intel Xeon AMD Opteron processors designed to optimize workflows. 48 cores worth of high-level AMD parts are on hand to support memory-intensive pre- and post-processing jobs and highly-threaded applications. The system’s nodes are connected with 40 gigabit QDR InfiniBand from Mellanox. iForge doubles as a Linux-cluster or a Windows machine, since it runs both Red Hat Enterprise Linux and Windows HPC Server 2008 R2 operating systems.

In a prepared statement, Merle Giles, director of NCSA’s Private Sector Program, comments:

“iForge is a unique resource at NCSA, as it is designed specifically for commercial and open-source applications widely used by industry. This machine offers our Private Sector Partners several platforms to reach higher and higher levels of scaling and performance for physics-based modeling and simulation applications.”

More information about NCSA’s Private Sector Program is available at

Australia’s MASSIVE Supercomputer Opens for General Use

Australia’s MASSIVE (Multi-modal Australian ScienceS Imaging and Visualisation Environment) supercomputer is now open for general use. The resource is part of a collaboration that includes the Victorian Partnership for Advanced Computing (VPAC), the Australian Synchrotron, CSIRO, Monash University, and the NCI. The State Government of Victoria also provided funding for the project.

The MASSIVE supercomputer is comprised of two tightly-coupled high performance computers — two 42 node IBM iDataPlex systems, each having 84 NVIDIA M2070 GPUs, 504 Intel Westmere compute cores, and 2 TB of memory. The combined resource offers 1,008 CPU-cores and 168 NVIDIA M2070 GPUs. Ten nodes have been upgraded to advanced M2070Q GPUs and 192 GB memory each, to address the specific requirements of interactive visualization workloads. Each system uses a high performance GPFS parallel file system, and both Linux and Windows HPC Cluster-based services are available.

The allocation process is open to the Australian research community and is managed by the NCI Merit Allocation Scheme. Researchers with a need for MASSIVE’s extensive rendering and visualization capabilities will be given priority, as will those whose applications leverage GPU acceleration. The next call for proposals starts in November for access in 2012, but early access may be sought by sending an email request to Additional information regarding the allocation process is available at

PRACE Now Accepting Applications for Supercomputing Time

The Partnership for Advanced Computing in Europe (PRACE), which provides Europe with access to cutting-edge supercomputing resources, is now accepting submissions for its third call for proposals. Successful applicants will be able to access a total of 3 Tier-0 supercomputers and 17 national Tier-1 systems.

This call marks the first time that PRACE affiliates will get to use the Tier-0 “HERMIT” supercomputer. This Cray XE6 system offers one petaflop peak performance and will be installed in the fall at the High Performance Center of University Stuttgart. A planned upgrade is already in the works for the 2013, which will supply “HERMIT” with an additional 3-4 petaflops of power, creating a system with a possible 5 petaflops of peak performance.

The one-petaflop IBM BlueGene/P system, JUGENE, based at Germany’s Jülich Supercomputing Centre, and the 1.6 petaflop Bull Bullx cluster, CURIE, hosted by the French research agency, CEA, will also be available as part of this allocation. And for the first time, seventeen Tier-1 systems are also being included in the PRACE call. These Tier-1 resources were previously overseen by DEISA (the Distributed European Infrastructure for Supercomputing Applications) and were part of DECI calls, which now fall under the purview of PRACE.

More information about the PRACE allocation process is available at The current application period runs from May 2 – June 22, 2011.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This