Appro Comes Up Multi-Million Dollar Winner in HPC Procurement for NNSA

By Michael Feldman

June 8, 2011

For the second time in five years, Appro has been tapped to provide the National Nuclear Security Administration (NNSA) with HPC capacity clusters for the agency’s Advanced Simulation and Computing (ASC) and stockpile stewardship programs. The Tri-Lab Linux Capacity Cluster 2 (TLCC2) award is a two-year contract that will have the cluster-maker delivering HPC systems across three of the Department of Energy’s national labs. The deal is worth tens of millions of dollars to Appro and represents the biggest contract in the company’s 20-year history.

Over the past several years, Appro has been on a hot streak with the NNSA labs. The Peloton contract with Lawrence Livermore Lab back in 2006 was the company’s first big win in the NNSA arena. That was back in the day when 50 to 100 teraflops of capacity was considered monster-sized HPC. Peloton was a prelude to the initial Tri-Lab Linux Capacity Cluster (TLCC) award for Appro in 2007, which was the first time the NNSA decided to use a single cluster architecture, software stack, and system vendor for all three NNSA weapons labs — Lawrence Livermore (LLNL), Los Alamos (LANL) and Sandia (SNL) National Laboratories. That contract had Appro delivering 426 teraflops of capacity spread across nine clusters, and sending $26.1 million into the company’s revenue stream over a two-year period.

The sequel to the 2007 contract, the TLCC2 award announced today, will deliver something north of 3 petaflops of aggregate capacity to the three DOE labs. But if the contract exercises all its options, the amount will double to around 6 petaflops — that according to Appro VP John Lee, who heads up the company’s Operations & Advanced Technology Solutions Group. The total spend for the TLCC2 work will hinge on ASC funding in fiscal year 2012, but will end up being a good deal larger than the $26.1 million garnered for 2007 contract, says Lee.* “This is the largest single contract in Appro has ever been awarded,” he told HPCwire.

The mission of the new clusters is the same as in the original TLCC contract: to provide a capacity HPC infrastructure for computer simulations in support of the nation’s aging nuclear deterrent. The capacity systems are meant to be the workhorses that support the more rarified software running on the labs’ capability supercomputers. Here we’re referring to machines like Sequoia, the 20-petaflop Blue Gene/Q system to be deployed at Lawrence Livermore in 2012. Sequoia and machines of that ilk are designed to run the big scaled-out codes for the nuclear weapons models and uncertainty quantification simulations, both of which require highly tuned supercomputing technology. Meanwhile, the capacity clusters will be employed for algorithm development as well as to provide a general-purpose compute pool for basic science codes.

HPC capacity for this procurement is specified in scalable units, a concept the labs came up with in 2007 to define a unit of compute infrastructure than can be added in a modular fashion. One scalable unit delivers 50 peak teraflops of hardware (a scalable unit in the original Appro contract was just 20 teraflops), where a cluster may be anywhere from one to 18 units. The idea behind this approach is to simplify procurement, deployment and management of the systems across the three labs.

The Peloton and original Tri-Lab contract had Appro delivering AMD Opteron-based servers glued together with Mellanox DDR InfiniBand. This time around though, the labs will be getting Intel Xeon-based servers and QLogic QDR. Specifically, all the clusters will be based on a new version of Appro’s GreenBlade system using the upcoming eight-core Sandy Bridge-EP Xeon CPUs, with two processors and 32 GB of memory per node.

The company is also putting these same GreenBlade servers in the upcoming Gordon supercomputer at the San Diego Supercomputer Center (SDSC), says Appro’s Lee. According to him, Gordon and the new Tri-Lab clusters will be the first two Sandy Bridge-equipped HPC server deployments in the world.

As an aside, Appro will also be offering a cluster products with the upcoming AMD “Interlagos” (Opteron 6200 series) CPUs. Those system will be especially suited to applications that can spread easily across lots of cores and memory in SMP fashion — up to 16 per cores/processor and, theoretically at least, up to four processors per node, along with the associated memory.

But for HPC applications that are sensitive to memory performance, as in the Tri-Lab workloads, the customers will tend to favor the new Xeons, says Lee. Both Interlagos and Sandy Bridge EP offer four memory channels, however in the case of the Opteron, a 16-core Interlagos processor is packaged as two 8-core dies stuffed into the same socket. So each chip has direct access to only two channels. If cores from one chip wants to access memory attached to its companion chip, it has to go through the HyperTransport bus. With the monolithic Sandy Bridge die, all four memory channels are directly accessible to all the cores in the socket.

The new Tri-Lab clusters will be outfitted with QLogic QDR InfiniBand hardware, ditching the Mellanox parts in the TLCC and Peloton systems. In this case, the labs are favoring QLogic gear based on impressive scalability and performance results on some of their existing QLogic-equipped systems, in particular, the 23-thousand-core Sierra cluster at Lawrence Livermore.

If the contract timeframe had been a little later, the labs might have been tempted to go with Mellanox and their new FDR (Fourteen Data Rate) InfiniBand solutions, but the adapters, switches and related software will just be hitting the streets in the third quarter of this year. Since the initial TLCC2 systems are scheduled to be installed at all three labs before the end of September 2011, that would have made FDR InfiniBand an iffy proposition. However, the new GreenBlades will support PCIe 3.0, so the systems could conceivably be upgraded to FDR and eventually EDR adapters down the road.

Sandy Bridge-EP availability also adds some risk to the deployment schedule. Supposedly the new Xeons should be rolling out of the fabs in Q3 this year. But if they’re not in full production, Appro and the labs are hoping that they’ll be able to get enough of the CPUs to begin deliveries. Multiple systems are slated to be deployed at each site, with the largest machine, a 900 teraflop cluster, initially going to Lawrence Livermore

They’ll be some GPUs in the mix as well. All three labs have expressed an interest in accelerators for some of these clusters. Initially though, only Los Alamos will be installing such a system, in this case, a 324-node cluster, equipped with 648 of the latest NVIDIA Tesla M2090 GPUs. That’s just for starters; Los Alamos is also hoping to purchase a GPU-cluster about twice that size. The three labs are also interested in Intel’s forthcoming “Knights Corner” accelerators, but they are not in the deliverables on any planned systems at this point, says Lee.

*The NNSA has subsequently announced that the initial contract award will be for $39 million, with up to $89 million possible if all options are exercised.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This