Chinese Super Breaks World Record in Application Performance

By Michael Feldman

June 9, 2011

In case you were wondering if these new-fangled Chinese GPU-powered supercomputers can do anything useful, Thursday’s announcement about the latest exploits of the Tianhe-1A system should give you some idea of the significance of these petascale beasts. On Thursday, researchers from the Chinese Academy of Sciences’ Institute of Process Engineering (CAS-IPE) claimed to have run a molecular simulation code at 1.87 petaflops — the highest floating point performance ever achieved by a real-world application code. The simulation is being used to help discern the behavior of crystalline silicon, a material used in solar panels and semiconductors.

According to NVIDIA, the application used just 2,000 lines of CUDA to accelerate the simulation — not an inconsequential amount of source code, but considering the result, a pretty impressive ROI. In addition, all the reported FLOPS for this application were attributed to GPUs, in this case, 7,168 of them. The three-hour simulation modeled the behavior of 110 billion atoms, beating out the previous record for a molecular simulation code, which modeled 49 billion atoms at 369 teraflops. The latter was performed on Roadrunner, the original petaflop super, accelerated by IBM’s souped up Cell processors, the PowerXCell 8i.

The 1.87 petaflop performance is quite an achievement for the top-ranked Tianhe-1A, especially considering the current number two system, the CPU-only Jaguar at Oak Ridge Lab, manages just 1.76 petaflops on Linpack, an artificial benchmark designed to show off a system’s floating point muscles. In 2008, Jaguar delivered it own sustained petaflop for a real-world application, in this case a superconductor simulation code, which hit 1.35 petaflops*. That work nabbed the application team at Oak Ridge the Gordon Bell Prize that year.

Whether the CAS-IPE team wins any trophies for its molecular simulation application remains to be seen. The researchers will be presenting their work at the upcoming the NVIDIA GPU Technology Conference (GTC) in December in Beijing, and also next May in San Jose, California at the US GTC event.

Over and above the impressive FLOPS is the larger significance of using the technology to propel science and engineering forward. Last year, NVIDIA Tesla GM Andy Keane, penned an opinion piece warning that the lagging adoption of GPU in HPC could threaten the country’s competitive edge. While that editorial could easily be construed as self-serving for his employer’s interests, the fact is that the US and Europe have lagged countries like China and Japan in adopting this technology for their most elite systems. Those nations saw the revamped graphics chip as the most economical path to petascale machines.

Of course, there are valid reasons to be wary GPU computing for HPC — programmability difficulties, over-hyping of performance, proprietary software, etc. — leading many in the HPC community to be extra careful about adopting the technology. But the negative backwash from the original flood of hype can be as ill-informed as the initial exaggerations. In the current issue of HPCwire, Stone Ridge Technology CEO and GPU enthusiast Vincent Natoli, offers a nice set of rebuttals to the major objections to GPU computing. If you’re a GPGPU fence-sitter, it’s definitely worth a read.

Beyond the significance of GPU usage, the application work demonstrates that the Chinese are not just building these big machines for national prestige. Simulations such as these support basic science research that can be applied to designing and manufacturing better solar energy panels and semiconductor devices. These types of high-tech commercial applications are exactly what the US and other industrialized countries envision as the basis for their future economic growth, and their ability to compete in the global marketplace.

In that sense, even though today’s announcement won’t appear on the front page of the New York Times, as did the Tianhe-1A TOP500 news, this development is arguably much more significant.

It’s also best to see this achievement in the larger context of what the Chinese scientific community is doing. A recent article in Forbes points out that China is quickly catching up to US in scientific output, and in some cases surpassing it:

In 2009, for the first time, Chinese researchers published more papers in information technology than those in the U.S., with both countries churning out more than 100,000 info-tech publications. In clean and alternative energy, Chinese researchers have likewise been publishing up a storm, not surpassing U.S. researchers but coming close.

The bottom line is that the US is in danger of losing its technological edge, which it has basically enjoyed, unchallenged, since the end of World War II. It’s not that GPU computing is the magic bullet here. But news like this should be a wake-up call to American HPC’ers and policy-makers that sometimes being extra careful is the riskiest proposition of them all.

*The same superconductor simulation subsequently achieved 1.9 petaflops on the upgraded Jaguar supercomputer.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This