Chinese Super Breaks World Record in Application Performance

By Michael Feldman

June 9, 2011

In case you were wondering if these new-fangled Chinese GPU-powered supercomputers can do anything useful, Thursday’s announcement about the latest exploits of the Tianhe-1A system should give you some idea of the significance of these petascale beasts. On Thursday, researchers from the Chinese Academy of Sciences’ Institute of Process Engineering (CAS-IPE) claimed to have run a molecular simulation code at 1.87 petaflops — the highest floating point performance ever achieved by a real-world application code. The simulation is being used to help discern the behavior of crystalline silicon, a material used in solar panels and semiconductors.

According to NVIDIA, the application used just 2,000 lines of CUDA to accelerate the simulation — not an inconsequential amount of source code, but considering the result, a pretty impressive ROI. In addition, all the reported FLOPS for this application were attributed to GPUs, in this case, 7,168 of them. The three-hour simulation modeled the behavior of 110 billion atoms, beating out the previous record for a molecular simulation code, which modeled 49 billion atoms at 369 teraflops. The latter was performed on Roadrunner, the original petaflop super, accelerated by IBM’s souped up Cell processors, the PowerXCell 8i.

The 1.87 petaflop performance is quite an achievement for the top-ranked Tianhe-1A, especially considering the current number two system, the CPU-only Jaguar at Oak Ridge Lab, manages just 1.76 petaflops on Linpack, an artificial benchmark designed to show off a system’s floating point muscles. In 2008, Jaguar delivered it own sustained petaflop for a real-world application, in this case a superconductor simulation code, which hit 1.35 petaflops*. That work nabbed the application team at Oak Ridge the Gordon Bell Prize that year.

Whether the CAS-IPE team wins any trophies for its molecular simulation application remains to be seen. The researchers will be presenting their work at the upcoming the NVIDIA GPU Technology Conference (GTC) in December in Beijing, and also next May in San Jose, California at the US GTC event.

Over and above the impressive FLOPS is the larger significance of using the technology to propel science and engineering forward. Last year, NVIDIA Tesla GM Andy Keane, penned an opinion piece warning that the lagging adoption of GPU in HPC could threaten the country’s competitive edge. While that editorial could easily be construed as self-serving for his employer’s interests, the fact is that the US and Europe have lagged countries like China and Japan in adopting this technology for their most elite systems. Those nations saw the revamped graphics chip as the most economical path to petascale machines.

Of course, there are valid reasons to be wary GPU computing for HPC — programmability difficulties, over-hyping of performance, proprietary software, etc. — leading many in the HPC community to be extra careful about adopting the technology. But the negative backwash from the original flood of hype can be as ill-informed as the initial exaggerations. In the current issue of HPCwire, Stone Ridge Technology CEO and GPU enthusiast Vincent Natoli, offers a nice set of rebuttals to the major objections to GPU computing. If you’re a GPGPU fence-sitter, it’s definitely worth a read.

Beyond the significance of GPU usage, the application work demonstrates that the Chinese are not just building these big machines for national prestige. Simulations such as these support basic science research that can be applied to designing and manufacturing better solar energy panels and semiconductor devices. These types of high-tech commercial applications are exactly what the US and other industrialized countries envision as the basis for their future economic growth, and their ability to compete in the global marketplace.

In that sense, even though today’s announcement won’t appear on the front page of the New York Times, as did the Tianhe-1A TOP500 news, this development is arguably much more significant.

It’s also best to see this achievement in the larger context of what the Chinese scientific community is doing. A recent article in Forbes points out that China is quickly catching up to US in scientific output, and in some cases surpassing it:

In 2009, for the first time, Chinese researchers published more papers in information technology than those in the U.S., with both countries churning out more than 100,000 info-tech publications. In clean and alternative energy, Chinese researchers have likewise been publishing up a storm, not surpassing U.S. researchers but coming close.

The bottom line is that the US is in danger of losing its technological edge, which it has basically enjoyed, unchallenged, since the end of World War II. It’s not that GPU computing is the magic bullet here. But news like this should be a wake-up call to American HPC’ers and policy-makers that sometimes being extra careful is the riskiest proposition of them all.

*The same superconductor simulation subsequently achieved 1.9 petaflops on the upgraded Jaguar supercomputer.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This