Startup Brings HPC to Big Data Analytics

By Michael Feldman

June 16, 2011

For all the accolades one hears about German engineering, there are few IT vendors native to that country. Recently though, we got the opportunity to talk with one such company, ParStream, a Cologne-based startup that has developed a bleeding-edge CPU/GPU-based analytics platform that marries high performance computing to big data.

ParStream, whose official company name is empulse GmbH, was founded four years ago by Michael Hummel and Joerg Bienert, who share the title of managing director. The duo funded the venture themselves but were able to subsequently attract some external investment. That was enough to develop the initial software and appliance products, and even snag a couple of paying customers. Right now they are looking for venture capital to move the business into the fast lane.

ParStream was initially formed around the idea of doing IT consulting and application development, much like the work Hummel and Bienert performed at Accenture, where the two had met. But about three years ago, their newly hatched company got a contract from the German tourism industry to build a search engine for a travel package offering. They wanted the application to be able to search through about 6 billion data records against 20 parameters in less that 100 ms. Unfortunately, most of the current database technology, based on decades-old software architectures, doesn’t provide anything close to the level of parallelism required to digest these big databases under such strict time constraints. Thus was born ParStream and its new mission: to do big data analytics with an HPC flair.

Hummel and Bienert developed their own database software kernel that was able to handle the tourism industry’s search problem on conventional hardware, that is, x86 clusters. According to Bienert, they quickly realized the solution they came up with could be generalized. “Afterward, we looked at other industries and found that this big data challenge was everywhere, so we decided to make a product out of it,” he told HPCwire.

Hummel and Bienert figured any business that deals in super-sized datasets and has a need for interactive analysis would be able to use this technology. The main technological challenge is to be able to run many concurrent queries on the data and deliver the results in real-time or near real-time. This includes such applications such as web analytics, bioinformatics, intelligent ad serving, algorithmic trading, fraud detection, market research, and smart energy metering, among many others.

As suggested by its name, the ParStream software performs parallel streaming of data structures. In this case they are focused on structured data, but of such a size that they can have thousands of columns and millions, or even billions, of rows. According to the company, their offering performs, on average, about 35 times faster than traditional database products.

The secret is to parallelize each query such that it can be processed simultaneously on many cores spread across multiple nodes. In a cluster environment, the data is stored on individual servers in a “shared nothing” environment. Since there is little interprocess communication, the performance can scale linearly with the cluster size; doubling processors or nodes should double throughput.

They haven’t tested ParStream on a petabyte-sized system yet, but according to Bienert, there is no inherent limitation in the software that would prevent it from scaling to that level. To be fair, a lot of other analytics engines also operate in parallel, but in many cases that means multiple queries can be run simultaneously, but each requires its own processor.

Newer technology such as Google’s MapReduce and its open-source Hadoop derivative, are able to decompose the query into many independent pieces, just like the ParStream software. But according to Bienert, the MapReduce technology is more suited for batch-mode processing, rather than real-time analysis. Three of the ParStream’s potential clients had tried the MapReduce scheme and encountered those limitations. In fact, last year Google itself abandoned MapReduce for query-type searching in favor of a higher performance technology called Dremel.

It’s not just about query parallelization though. ParStream’s real secret sauce is their index structure. Like many traditional relational databases, the bitmap index is in compressed form to save space in memory. But according to Bienert, the ParStream index can be used while compressed; there’s no need for a compute- and memory-intensive decompression step to operate on it. “This is the heart of ParStream and what makes it extremely fast,” he says.

That same technology makes it extremely efficient from a hardware standpoint. Bienert says in a production environment, where the other database solutions would require about 400 servers, ParStream only needs 20 and executes many times faster.

They initially wrote their software to run on generic 64-bit x86-based Linux platforms — single nodes and clusters. Later they found their parallel approach and bitmap structure was very well-suited to general-purpose GPUs, which provided a speed up of 8-10x, compared to the CPU-only version.

Not just any GPU would do though. The ParStream software required error corrected code (ECC) memory since it was critical to maintain the integrity of the bitmap index and other compressed data structures in memory. Arbitrarily flipping bits would not do. With NVIDIA’s Fermi (Tesla 20-series) GPU, ParStream got that critical ECC support.

For the GPU-accelerated version, the company has to provide a custom applicance because the configuration is a little tricky for the software’s needs. In fact, each GPU deployment is a custom job at this point. The specific configuration (mix of Fermi cards, x86 processors, and memory capacity) is based on application requirements associated with throughput, database size, and so on. A single node can contain up to four CPUs and eight GPU cards.

At this point, the company is building up proof points for their technology. They have two existing customers in Europe in the eCommerce sector, and five additional prospects across multiple industries running proof-of-concept deployments.

Early results look encouraging. A German customer with a web analytics application originally took three to five minutes on a “large cluster” to analyze billions of records using their traditional database solution. After some tuning of the ParStream software, the customer was able to perform the same query calculation in 15 ms, and on just four x86 servers. The most difficult part was convincing the customer that the solution was spitting out valid results “instantaneously.” The company is currently in the process of migrating their whole infrastructure to ParStream, says Bienert.

In two other instances where interactive analytics was the driving goal, ParStream delivered impressive performance results. A market research firm with 20 million records (1000 columns apiece) was able to perform 5000 queries in just 5 seconds, and a climate research center in Germany was able analyze 3 billion records in 100 milliseconds (ms) as part of an effort to identify hurricane risk. Each of these applications was run on a single server using the ParStream offering.

Bienert believes ParStream’s high throughput, low-latency analytics has a significant edge on its competition at this point. Other up-and-coming big data vendors, like Vertica and EXASOL, are also touting highly parallel architectures, but as of today Bienert thinks they’re alone in offering GPU-based acceleration and their unique compressed data indexing scheme. The company is hoping that’s enough to attract some savvy investors.

In the meantime they’ll be hitting the trade show circuit. Hummel introduced the technology last September at NVIDIA’s GPU Technology Conference, where the company was selected as “One to Watch” by the GPU maker. ParStream’s first exhibition of their offerings will be at the International Supercomputing Conference in Hamburg, Germany next week, where they hope to wow the HPC faithful.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

NSF Issues $60M RFP for “Towards a Leadership-Class” System

May 16, 2017

In case you missed it, the National Science Foundation issued the request for proposals (RFP) for the next ‘Towards a Leadership-Class Computing Facility – Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Microsoft Azure Will Debut Pascal GPU Instances This Year

May 8, 2017

As Nvidia's GPU Technology Conference gets underway in San Jose, Calif., Microsoft today revealed plans to add Pascal-generation GPU horsepower to its Azure clo Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This