Startup Brings HPC to Big Data Analytics

By Michael Feldman

June 16, 2011

For all the accolades one hears about German engineering, there are few IT vendors native to that country. Recently though, we got the opportunity to talk with one such company, ParStream, a Cologne-based startup that has developed a bleeding-edge CPU/GPU-based analytics platform that marries high performance computing to big data.

ParStream, whose official company name is empulse GmbH, was founded four years ago by Michael Hummel and Joerg Bienert, who share the title of managing director. The duo funded the venture themselves but were able to subsequently attract some external investment. That was enough to develop the initial software and appliance products, and even snag a couple of paying customers. Right now they are looking for venture capital to move the business into the fast lane.

ParStream was initially formed around the idea of doing IT consulting and application development, much like the work Hummel and Bienert performed at Accenture, where the two had met. But about three years ago, their newly hatched company got a contract from the German tourism industry to build a search engine for a travel package offering. They wanted the application to be able to search through about 6 billion data records against 20 parameters in less that 100 ms. Unfortunately, most of the current database technology, based on decades-old software architectures, doesn’t provide anything close to the level of parallelism required to digest these big databases under such strict time constraints. Thus was born ParStream and its new mission: to do big data analytics with an HPC flair.

Hummel and Bienert developed their own database software kernel that was able to handle the tourism industry’s search problem on conventional hardware, that is, x86 clusters. According to Bienert, they quickly realized the solution they came up with could be generalized. “Afterward, we looked at other industries and found that this big data challenge was everywhere, so we decided to make a product out of it,” he told HPCwire.

Hummel and Bienert figured any business that deals in super-sized datasets and has a need for interactive analysis would be able to use this technology. The main technological challenge is to be able to run many concurrent queries on the data and deliver the results in real-time or near real-time. This includes such applications such as web analytics, bioinformatics, intelligent ad serving, algorithmic trading, fraud detection, market research, and smart energy metering, among many others.

As suggested by its name, the ParStream software performs parallel streaming of data structures. In this case they are focused on structured data, but of such a size that they can have thousands of columns and millions, or even billions, of rows. According to the company, their offering performs, on average, about 35 times faster than traditional database products.

The secret is to parallelize each query such that it can be processed simultaneously on many cores spread across multiple nodes. In a cluster environment, the data is stored on individual servers in a “shared nothing” environment. Since there is little interprocess communication, the performance can scale linearly with the cluster size; doubling processors or nodes should double throughput.

They haven’t tested ParStream on a petabyte-sized system yet, but according to Bienert, there is no inherent limitation in the software that would prevent it from scaling to that level. To be fair, a lot of other analytics engines also operate in parallel, but in many cases that means multiple queries can be run simultaneously, but each requires its own processor.

Newer technology such as Google’s MapReduce and its open-source Hadoop derivative, are able to decompose the query into many independent pieces, just like the ParStream software. But according to Bienert, the MapReduce technology is more suited for batch-mode processing, rather than real-time analysis. Three of the ParStream’s potential clients had tried the MapReduce scheme and encountered those limitations. In fact, last year Google itself abandoned MapReduce for query-type searching in favor of a higher performance technology called Dremel.

It’s not just about query parallelization though. ParStream’s real secret sauce is their index structure. Like many traditional relational databases, the bitmap index is in compressed form to save space in memory. But according to Bienert, the ParStream index can be used while compressed; there’s no need for a compute- and memory-intensive decompression step to operate on it. “This is the heart of ParStream and what makes it extremely fast,” he says.

That same technology makes it extremely efficient from a hardware standpoint. Bienert says in a production environment, where the other database solutions would require about 400 servers, ParStream only needs 20 and executes many times faster.

They initially wrote their software to run on generic 64-bit x86-based Linux platforms — single nodes and clusters. Later they found their parallel approach and bitmap structure was very well-suited to general-purpose GPUs, which provided a speed up of 8-10x, compared to the CPU-only version.

Not just any GPU would do though. The ParStream software required error corrected code (ECC) memory since it was critical to maintain the integrity of the bitmap index and other compressed data structures in memory. Arbitrarily flipping bits would not do. With NVIDIA’s Fermi (Tesla 20-series) GPU, ParStream got that critical ECC support.

For the GPU-accelerated version, the company has to provide a custom applicance because the configuration is a little tricky for the software’s needs. In fact, each GPU deployment is a custom job at this point. The specific configuration (mix of Fermi cards, x86 processors, and memory capacity) is based on application requirements associated with throughput, database size, and so on. A single node can contain up to four CPUs and eight GPU cards.

At this point, the company is building up proof points for their technology. They have two existing customers in Europe in the eCommerce sector, and five additional prospects across multiple industries running proof-of-concept deployments.

Early results look encouraging. A German customer with a web analytics application originally took three to five minutes on a “large cluster” to analyze billions of records using their traditional database solution. After some tuning of the ParStream software, the customer was able to perform the same query calculation in 15 ms, and on just four x86 servers. The most difficult part was convincing the customer that the solution was spitting out valid results “instantaneously.” The company is currently in the process of migrating their whole infrastructure to ParStream, says Bienert.

In two other instances where interactive analytics was the driving goal, ParStream delivered impressive performance results. A market research firm with 20 million records (1000 columns apiece) was able to perform 5000 queries in just 5 seconds, and a climate research center in Germany was able analyze 3 billion records in 100 milliseconds (ms) as part of an effort to identify hurricane risk. Each of these applications was run on a single server using the ParStream offering.

Bienert believes ParStream’s high throughput, low-latency analytics has a significant edge on its competition at this point. Other up-and-coming big data vendors, like Vertica and EXASOL, are also touting highly parallel architectures, but as of today Bienert thinks they’re alone in offering GPU-based acceleration and their unique compressed data indexing scheme. The company is hoping that’s enough to attract some savvy investors.

In the meantime they’ll be hitting the trade show circuit. Hummel introduced the technology last September at NVIDIA’s GPU Technology Conference, where the company was selected as “One to Watch” by the GPU maker. ParStream’s first exhibition of their offerings will be at the International Supercomputing Conference in Hamburg, Germany next week, where they hope to wow the HPC faithful.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This