Startup Brings HPC to Big Data Analytics

By Michael Feldman

June 16, 2011

For all the accolades one hears about German engineering, there are few IT vendors native to that country. Recently though, we got the opportunity to talk with one such company, ParStream, a Cologne-based startup that has developed a bleeding-edge CPU/GPU-based analytics platform that marries high performance computing to big data.

ParStream, whose official company name is empulse GmbH, was founded four years ago by Michael Hummel and Joerg Bienert, who share the title of managing director. The duo funded the venture themselves but were able to subsequently attract some external investment. That was enough to develop the initial software and appliance products, and even snag a couple of paying customers. Right now they are looking for venture capital to move the business into the fast lane.

ParStream was initially formed around the idea of doing IT consulting and application development, much like the work Hummel and Bienert performed at Accenture, where the two had met. But about three years ago, their newly hatched company got a contract from the German tourism industry to build a search engine for a travel package offering. They wanted the application to be able to search through about 6 billion data records against 20 parameters in less that 100 ms. Unfortunately, most of the current database technology, based on decades-old software architectures, doesn’t provide anything close to the level of parallelism required to digest these big databases under such strict time constraints. Thus was born ParStream and its new mission: to do big data analytics with an HPC flair.

Hummel and Bienert developed their own database software kernel that was able to handle the tourism industry’s search problem on conventional hardware, that is, x86 clusters. According to Bienert, they quickly realized the solution they came up with could be generalized. “Afterward, we looked at other industries and found that this big data challenge was everywhere, so we decided to make a product out of it,” he told HPCwire.

Hummel and Bienert figured any business that deals in super-sized datasets and has a need for interactive analysis would be able to use this technology. The main technological challenge is to be able to run many concurrent queries on the data and deliver the results in real-time or near real-time. This includes such applications such as web analytics, bioinformatics, intelligent ad serving, algorithmic trading, fraud detection, market research, and smart energy metering, among many others.

As suggested by its name, the ParStream software performs parallel streaming of data structures. In this case they are focused on structured data, but of such a size that they can have thousands of columns and millions, or even billions, of rows. According to the company, their offering performs, on average, about 35 times faster than traditional database products.

The secret is to parallelize each query such that it can be processed simultaneously on many cores spread across multiple nodes. In a cluster environment, the data is stored on individual servers in a “shared nothing” environment. Since there is little interprocess communication, the performance can scale linearly with the cluster size; doubling processors or nodes should double throughput.

They haven’t tested ParStream on a petabyte-sized system yet, but according to Bienert, there is no inherent limitation in the software that would prevent it from scaling to that level. To be fair, a lot of other analytics engines also operate in parallel, but in many cases that means multiple queries can be run simultaneously, but each requires its own processor.

Newer technology such as Google’s MapReduce and its open-source Hadoop derivative, are able to decompose the query into many independent pieces, just like the ParStream software. But according to Bienert, the MapReduce technology is more suited for batch-mode processing, rather than real-time analysis. Three of the ParStream’s potential clients had tried the MapReduce scheme and encountered those limitations. In fact, last year Google itself abandoned MapReduce for query-type searching in favor of a higher performance technology called Dremel.

It’s not just about query parallelization though. ParStream’s real secret sauce is their index structure. Like many traditional relational databases, the bitmap index is in compressed form to save space in memory. But according to Bienert, the ParStream index can be used while compressed; there’s no need for a compute- and memory-intensive decompression step to operate on it. “This is the heart of ParStream and what makes it extremely fast,” he says.

That same technology makes it extremely efficient from a hardware standpoint. Bienert says in a production environment, where the other database solutions would require about 400 servers, ParStream only needs 20 and executes many times faster.

They initially wrote their software to run on generic 64-bit x86-based Linux platforms — single nodes and clusters. Later they found their parallel approach and bitmap structure was very well-suited to general-purpose GPUs, which provided a speed up of 8-10x, compared to the CPU-only version.

Not just any GPU would do though. The ParStream software required error corrected code (ECC) memory since it was critical to maintain the integrity of the bitmap index and other compressed data structures in memory. Arbitrarily flipping bits would not do. With NVIDIA’s Fermi (Tesla 20-series) GPU, ParStream got that critical ECC support.

For the GPU-accelerated version, the company has to provide a custom applicance because the configuration is a little tricky for the software’s needs. In fact, each GPU deployment is a custom job at this point. The specific configuration (mix of Fermi cards, x86 processors, and memory capacity) is based on application requirements associated with throughput, database size, and so on. A single node can contain up to four CPUs and eight GPU cards.

At this point, the company is building up proof points for their technology. They have two existing customers in Europe in the eCommerce sector, and five additional prospects across multiple industries running proof-of-concept deployments.

Early results look encouraging. A German customer with a web analytics application originally took three to five minutes on a “large cluster” to analyze billions of records using their traditional database solution. After some tuning of the ParStream software, the customer was able to perform the same query calculation in 15 ms, and on just four x86 servers. The most difficult part was convincing the customer that the solution was spitting out valid results “instantaneously.” The company is currently in the process of migrating their whole infrastructure to ParStream, says Bienert.

In two other instances where interactive analytics was the driving goal, ParStream delivered impressive performance results. A market research firm with 20 million records (1000 columns apiece) was able to perform 5000 queries in just 5 seconds, and a climate research center in Germany was able analyze 3 billion records in 100 milliseconds (ms) as part of an effort to identify hurricane risk. Each of these applications was run on a single server using the ParStream offering.

Bienert believes ParStream’s high throughput, low-latency analytics has a significant edge on its competition at this point. Other up-and-coming big data vendors, like Vertica and EXASOL, are also touting highly parallel architectures, but as of today Bienert thinks they’re alone in offering GPU-based acceleration and their unique compressed data indexing scheme. The company is hoping that’s enough to attract some savvy investors.

In the meantime they’ll be hitting the trade show circuit. Hummel introduced the technology last September at NVIDIA’s GPU Technology Conference, where the company was selected as “One to Watch” by the GPU maker. ParStream’s first exhibition of their offerings will be at the International Supercomputing Conference in Hamburg, Germany next week, where they hope to wow the HPC faithful.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose primary use case is to support high IOPS rates to/from a scra Read more…

By John Russell

Lenovo to Debut ‘Neptune’ Cooling Technologies at ISC

June 19, 2018

Lenovo today announced a set of cooling technologies, dubbed Neptune, that include direct to node (DTN) warm water cooling, rear door heat exchanger (RDHX), and hybrid solutions that combine air and liquid cooling. Lenov Read more…

By John Russell

World Cup is Lame Compared to This Competition

June 18, 2018

So you think World Cup soccer is a big deal? While I’m sure it’s very compelling to watch a bunch of athletes kick a ball around, World Cup misses the boat because it doesn’t include teams putting together their ow Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Banks Boost Infrastructure to Tackle GDPR

As banks become more digital and data-driven, their IT managers are challenged with fast growing data volumes and lines-of-businesses’ (LoBs’) seemingly limitless appetite for analytics. Read more…

IBM Demonstrates Deep Neural Network Training with Analog Memory Devices

June 18, 2018

From smarter, more personalized apps to seemingly-ubiquitous Google Assistant and Alexa devices, AI adoption is showing no signs of slowing down – and yet, the hardware used for AI is far from perfect. Currently, GPUs Read more…

By Oliver Peckham

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose p Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

Exascale for the Rest of Us: Exaflops Systems Capable for Industry

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enter Read more…

By Doug Black

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This