Startup Brings HPC to Big Data Analytics

By Michael Feldman

June 16, 2011

For all the accolades one hears about German engineering, there are few IT vendors native to that country. Recently though, we got the opportunity to talk with one such company, ParStream, a Cologne-based startup that has developed a bleeding-edge CPU/GPU-based analytics platform that marries high performance computing to big data.

ParStream, whose official company name is empulse GmbH, was founded four years ago by Michael Hummel and Joerg Bienert, who share the title of managing director. The duo funded the venture themselves but were able to subsequently attract some external investment. That was enough to develop the initial software and appliance products, and even snag a couple of paying customers. Right now they are looking for venture capital to move the business into the fast lane.

ParStream was initially formed around the idea of doing IT consulting and application development, much like the work Hummel and Bienert performed at Accenture, where the two had met. But about three years ago, their newly hatched company got a contract from the German tourism industry to build a search engine for a travel package offering. They wanted the application to be able to search through about 6 billion data records against 20 parameters in less that 100 ms. Unfortunately, most of the current database technology, based on decades-old software architectures, doesn’t provide anything close to the level of parallelism required to digest these big databases under such strict time constraints. Thus was born ParStream and its new mission: to do big data analytics with an HPC flair.

Hummel and Bienert developed their own database software kernel that was able to handle the tourism industry’s search problem on conventional hardware, that is, x86 clusters. According to Bienert, they quickly realized the solution they came up with could be generalized. “Afterward, we looked at other industries and found that this big data challenge was everywhere, so we decided to make a product out of it,” he told HPCwire.

Hummel and Bienert figured any business that deals in super-sized datasets and has a need for interactive analysis would be able to use this technology. The main technological challenge is to be able to run many concurrent queries on the data and deliver the results in real-time or near real-time. This includes such applications such as web analytics, bioinformatics, intelligent ad serving, algorithmic trading, fraud detection, market research, and smart energy metering, among many others.

As suggested by its name, the ParStream software performs parallel streaming of data structures. In this case they are focused on structured data, but of such a size that they can have thousands of columns and millions, or even billions, of rows. According to the company, their offering performs, on average, about 35 times faster than traditional database products.

The secret is to parallelize each query such that it can be processed simultaneously on many cores spread across multiple nodes. In a cluster environment, the data is stored on individual servers in a “shared nothing” environment. Since there is little interprocess communication, the performance can scale linearly with the cluster size; doubling processors or nodes should double throughput.

They haven’t tested ParStream on a petabyte-sized system yet, but according to Bienert, there is no inherent limitation in the software that would prevent it from scaling to that level. To be fair, a lot of other analytics engines also operate in parallel, but in many cases that means multiple queries can be run simultaneously, but each requires its own processor.

Newer technology such as Google’s MapReduce and its open-source Hadoop derivative, are able to decompose the query into many independent pieces, just like the ParStream software. But according to Bienert, the MapReduce technology is more suited for batch-mode processing, rather than real-time analysis. Three of the ParStream’s potential clients had tried the MapReduce scheme and encountered those limitations. In fact, last year Google itself abandoned MapReduce for query-type searching in favor of a higher performance technology called Dremel.

It’s not just about query parallelization though. ParStream’s real secret sauce is their index structure. Like many traditional relational databases, the bitmap index is in compressed form to save space in memory. But according to Bienert, the ParStream index can be used while compressed; there’s no need for a compute- and memory-intensive decompression step to operate on it. “This is the heart of ParStream and what makes it extremely fast,” he says.

That same technology makes it extremely efficient from a hardware standpoint. Bienert says in a production environment, where the other database solutions would require about 400 servers, ParStream only needs 20 and executes many times faster.

They initially wrote their software to run on generic 64-bit x86-based Linux platforms — single nodes and clusters. Later they found their parallel approach and bitmap structure was very well-suited to general-purpose GPUs, which provided a speed up of 8-10x, compared to the CPU-only version.

Not just any GPU would do though. The ParStream software required error corrected code (ECC) memory since it was critical to maintain the integrity of the bitmap index and other compressed data structures in memory. Arbitrarily flipping bits would not do. With NVIDIA’s Fermi (Tesla 20-series) GPU, ParStream got that critical ECC support.

For the GPU-accelerated version, the company has to provide a custom applicance because the configuration is a little tricky for the software’s needs. In fact, each GPU deployment is a custom job at this point. The specific configuration (mix of Fermi cards, x86 processors, and memory capacity) is based on application requirements associated with throughput, database size, and so on. A single node can contain up to four CPUs and eight GPU cards.

At this point, the company is building up proof points for their technology. They have two existing customers in Europe in the eCommerce sector, and five additional prospects across multiple industries running proof-of-concept deployments.

Early results look encouraging. A German customer with a web analytics application originally took three to five minutes on a “large cluster” to analyze billions of records using their traditional database solution. After some tuning of the ParStream software, the customer was able to perform the same query calculation in 15 ms, and on just four x86 servers. The most difficult part was convincing the customer that the solution was spitting out valid results “instantaneously.” The company is currently in the process of migrating their whole infrastructure to ParStream, says Bienert.

In two other instances where interactive analytics was the driving goal, ParStream delivered impressive performance results. A market research firm with 20 million records (1000 columns apiece) was able to perform 5000 queries in just 5 seconds, and a climate research center in Germany was able analyze 3 billion records in 100 milliseconds (ms) as part of an effort to identify hurricane risk. Each of these applications was run on a single server using the ParStream offering.

Bienert believes ParStream’s high throughput, low-latency analytics has a significant edge on its competition at this point. Other up-and-coming big data vendors, like Vertica and EXASOL, are also touting highly parallel architectures, but as of today Bienert thinks they’re alone in offering GPU-based acceleration and their unique compressed data indexing scheme. The company is hoping that’s enough to attract some savvy investors.

In the meantime they’ll be hitting the trade show circuit. Hummel introduced the technology last September at NVIDIA’s GPU Technology Conference, where the company was selected as “One to Watch” by the GPU maker. ParStream’s first exhibition of their offerings will be at the International Supercomputing Conference in Hamburg, Germany next week, where they hope to wow the HPC faithful.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

OpenACC Shows Growing Strength at ISC

June 19, 2017

OpenACC is strutting its stuff at ISC this year touting expanding membership, a jump in downloads, favorable benchmarks across several architectures, new staff members, and new support by key HPC applications providers, Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

OpenACC Shows Growing Strength at ISC

June 19, 2017

OpenACC is strutting its stuff at ISC this year touting expanding membership, a jump in downloads, favorable benchmarks across several architectures, new staff Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This