Startup Brings HPC to Big Data Analytics

By Michael Feldman

June 16, 2011

For all the accolades one hears about German engineering, there are few IT vendors native to that country. Recently though, we got the opportunity to talk with one such company, ParStream, a Cologne-based startup that has developed a bleeding-edge CPU/GPU-based analytics platform that marries high performance computing to big data.

ParStream, whose official company name is empulse GmbH, was founded four years ago by Michael Hummel and Joerg Bienert, who share the title of managing director. The duo funded the venture themselves but were able to subsequently attract some external investment. That was enough to develop the initial software and appliance products, and even snag a couple of paying customers. Right now they are looking for venture capital to move the business into the fast lane.

ParStream was initially formed around the idea of doing IT consulting and application development, much like the work Hummel and Bienert performed at Accenture, where the two had met. But about three years ago, their newly hatched company got a contract from the German tourism industry to build a search engine for a travel package offering. They wanted the application to be able to search through about 6 billion data records against 20 parameters in less that 100 ms. Unfortunately, most of the current database technology, based on decades-old software architectures, doesn’t provide anything close to the level of parallelism required to digest these big databases under such strict time constraints. Thus was born ParStream and its new mission: to do big data analytics with an HPC flair.

Hummel and Bienert developed their own database software kernel that was able to handle the tourism industry’s search problem on conventional hardware, that is, x86 clusters. According to Bienert, they quickly realized the solution they came up with could be generalized. “Afterward, we looked at other industries and found that this big data challenge was everywhere, so we decided to make a product out of it,” he told HPCwire.

Hummel and Bienert figured any business that deals in super-sized datasets and has a need for interactive analysis would be able to use this technology. The main technological challenge is to be able to run many concurrent queries on the data and deliver the results in real-time or near real-time. This includes such applications such as web analytics, bioinformatics, intelligent ad serving, algorithmic trading, fraud detection, market research, and smart energy metering, among many others.

As suggested by its name, the ParStream software performs parallel streaming of data structures. In this case they are focused on structured data, but of such a size that they can have thousands of columns and millions, or even billions, of rows. According to the company, their offering performs, on average, about 35 times faster than traditional database products.

The secret is to parallelize each query such that it can be processed simultaneously on many cores spread across multiple nodes. In a cluster environment, the data is stored on individual servers in a “shared nothing” environment. Since there is little interprocess communication, the performance can scale linearly with the cluster size; doubling processors or nodes should double throughput.

They haven’t tested ParStream on a petabyte-sized system yet, but according to Bienert, there is no inherent limitation in the software that would prevent it from scaling to that level. To be fair, a lot of other analytics engines also operate in parallel, but in many cases that means multiple queries can be run simultaneously, but each requires its own processor.

Newer technology such as Google’s MapReduce and its open-source Hadoop derivative, are able to decompose the query into many independent pieces, just like the ParStream software. But according to Bienert, the MapReduce technology is more suited for batch-mode processing, rather than real-time analysis. Three of the ParStream’s potential clients had tried the MapReduce scheme and encountered those limitations. In fact, last year Google itself abandoned MapReduce for query-type searching in favor of a higher performance technology called Dremel.

It’s not just about query parallelization though. ParStream’s real secret sauce is their index structure. Like many traditional relational databases, the bitmap index is in compressed form to save space in memory. But according to Bienert, the ParStream index can be used while compressed; there’s no need for a compute- and memory-intensive decompression step to operate on it. “This is the heart of ParStream and what makes it extremely fast,” he says.

That same technology makes it extremely efficient from a hardware standpoint. Bienert says in a production environment, where the other database solutions would require about 400 servers, ParStream only needs 20 and executes many times faster.

They initially wrote their software to run on generic 64-bit x86-based Linux platforms — single nodes and clusters. Later they found their parallel approach and bitmap structure was very well-suited to general-purpose GPUs, which provided a speed up of 8-10x, compared to the CPU-only version.

Not just any GPU would do though. The ParStream software required error corrected code (ECC) memory since it was critical to maintain the integrity of the bitmap index and other compressed data structures in memory. Arbitrarily flipping bits would not do. With NVIDIA’s Fermi (Tesla 20-series) GPU, ParStream got that critical ECC support.

For the GPU-accelerated version, the company has to provide a custom applicance because the configuration is a little tricky for the software’s needs. In fact, each GPU deployment is a custom job at this point. The specific configuration (mix of Fermi cards, x86 processors, and memory capacity) is based on application requirements associated with throughput, database size, and so on. A single node can contain up to four CPUs and eight GPU cards.

At this point, the company is building up proof points for their technology. They have two existing customers in Europe in the eCommerce sector, and five additional prospects across multiple industries running proof-of-concept deployments.

Early results look encouraging. A German customer with a web analytics application originally took three to five minutes on a “large cluster” to analyze billions of records using their traditional database solution. After some tuning of the ParStream software, the customer was able to perform the same query calculation in 15 ms, and on just four x86 servers. The most difficult part was convincing the customer that the solution was spitting out valid results “instantaneously.” The company is currently in the process of migrating their whole infrastructure to ParStream, says Bienert.

In two other instances where interactive analytics was the driving goal, ParStream delivered impressive performance results. A market research firm with 20 million records (1000 columns apiece) was able to perform 5000 queries in just 5 seconds, and a climate research center in Germany was able analyze 3 billion records in 100 milliseconds (ms) as part of an effort to identify hurricane risk. Each of these applications was run on a single server using the ParStream offering.

Bienert believes ParStream’s high throughput, low-latency analytics has a significant edge on its competition at this point. Other up-and-coming big data vendors, like Vertica and EXASOL, are also touting highly parallel architectures, but as of today Bienert thinks they’re alone in offering GPU-based acceleration and their unique compressed data indexing scheme. The company is hoping that’s enough to attract some savvy investors.

In the meantime they’ll be hitting the trade show circuit. Hummel introduced the technology last September at NVIDIA’s GPU Technology Conference, where the company was selected as “One to Watch” by the GPU maker. ParStream’s first exhibition of their offerings will be at the International Supercomputing Conference in Hamburg, Germany next week, where they hope to wow the HPC faithful.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This