Heterogeneous Computing and HPC Accelerators, Disruptive Technologies in the Making

By Michael Feldman

June 18, 2011

At this week’s International Supercomputing Conference in Hamburg, Germany, two of the biggest topics on the agenda are heterogeneous architectures and GPU/accelerator computing. Those emerging trends are joined at the hip, thanks mostly to the efforts of NVIDIA and their industry partners. Intel’s ongoing plans for its Many Integrated Core (MIC) co-processor and AMD’s introduction of its CPU-GPU “Fusion” processors are yet additional indications that the industry is moving to an architecture where CPUs married to accelerators will provide the next big seismic shift in high performance computing.

And just in time. The HPC community has known for awhile that conventional CPUs, at least in their x86 form, will not be a practical path to exascale computing. That’s not just academic theory. HPC vendors and users have come to realize that commodity CPU-based computing, even with multicore parallelism, can only go so far, performance-wise.

But is the emerging HPC heterogeneous architecture with discrete GPUs or Intel MIC co-processors just another dead end as well? That’s what we set to find out in a recent conversations with John Shalf, who heads up the Advanced Technologies Group at the National Energy Research Scientific Computing Center (NERSC) in Berkeley, California. Shalf has given a lot of thought to this new computing paradigm, and at ISC’11 he’ll be moderating a panel entitled Heterogeneous Systems & Their Challenges to HPC Systems.

Like all HPC researchers, Shalf is well aware of the impact of general-purpose GPUs and other accelerators in the supercomputing realm. And while he believes heterogeneous architectures will be the future of HPC, he is skeptical of the current implementations. Shalf has two main objections to the today’s model: 1) the awkwardness of the accelerator as an external processor and 2) what he sees as significant shortcomings in the available programming models.

Like many in the industry, Shalf thinks relegating the accelerator to an external PCI device negates a lot of the performance advantages inherent in vector-like processors. The problem is that the time taken to transfer data between main CPU memory and local memory on the accelerator card via a relatively slow PCI Express (PCIe) connection can nullify any performance advantages gained by offloading the CPU. In essence, this has cast the co-processor as an I/O device.

But it’s not just a performance issue. The external accelerator setup also drives Shalf’s larger criticism — that of the programming model. Having separate memory spaces for the CPU and accelerator means the application has to account for moving data back and forth between processors. And in Shalf’s estimation, performing this data shuffle across the PCIe bus is tedious, error-prone, and complicates algorithm design.

On that last point, because data management is so critical to accelerator performance, the associated code often must be intermingled with the algorithm itself. In fact from Shalf’s perspective, the lack of a unified memory space is a much larger issue than the difficulties entailed in porting codes to CUDA, OpenCL, OpenMP, or any other kind of parallel programming framework. “My concern with accelerators hanging off of PCI Express is that they distract us from the core issue of expressing parallelism.”

Then there are the programming models themselves. Although Shalf recognizes that NVIDIA’s CUDA programming environment is the most established and the most performance-friendly software environment for GPU computing, it is by definition, proprietary. “Anybody who has any history in computing has very little stomach for single-vendor solutions,” he says.

OpenCL, on the other hand, is a hardware-independent, but not as mature as CUDA, and is unproven for performance-critical applications. Compiler directives offer a higher level framework, but as we’ll see in a moment, it has its own challenges.

Despite those reservations, there have been GPU computing success stories at Shalf’s NERSC. In particular, scientists with quantum chromodynamics (QCD) and quantum chemistry applications have hand-coded the underlying algorithms in CUDA and are enjoying some nice application speedups. In these cases, the codes are reasonably compact and amenable to GPU porting, so the programming effort is within the reach of small teams of developers.

For larger more complex legacy codes, the compiler directives approach offers a higher level alternative for programming accelerators. In this case, special directives are inserted into C or Fortran source to instruct the compiler to generate low-level instructions for the accelerator. The nice feature here is that such directives are ignored by compilers that don’t support them. So as long as the original source code around the directives can be left alone, the application can be transferred from target to target, with just a recompilation.

PGI and CAPS enterprise have commercial compiler products for GPUs based on their own directive schemes, and the OpenMP group is developing an open-standards version for accelerators. All have the advantage of allowing developers to build on top of existing high-level source code, while maintaining some semblance of hardware independence.

But according to Shalf, the performance results on GPUs for existing directives implementations have not been promising thus far. Some of this has to do with the fact the directives don’t address on-chip data stores (non-cache coherent shared memory and registers), which need to be explicitly managed for optimal performance. That management is level up to the intelligence of compilers, and Shalf is skeptical that they can deliver this level of sophistication.

Furthermore, the directives only partially hide the data management problem, so the application programmer will still be saddled with this distraction. OpenMP-supported compilers for the Intel MIC platform may yield better results, but that work is in its preliminary stages.

As far as maintaining target independence, from what Shalf has seen, the application of these directives tends to mangle the application source. As a result, in many cases it won’t be possible maintain separate code bases for CPU-only and various accelerator versions, negating one of the main advantages of this approach. Shalf says the current joke going around the community is that the total amount of text in the accelerator directives exceeds the amount of source code that you’re applying those directives to. “The environment is just not ready for the average user to hop onboard,” he says.

Fortunately, the accelerator chip vendors seem headed toward integrated CPU-accelerator processors, doing away with the PCIe bus performance limitations and the associated memory management. AMD is furthest along in this regard with its Fusion processors, although the first iterations announced this year are all aimed at client-side computing. NVIDIA’s “Project Denver” aims to marry ARM CPUs with future GPU cores in the 2013-2014 timeframe and will address server and HPC platforms. Intel has not publicly stated its intentions to have its MIC co-processor sharing silicon with Xeons, but given NVIDIA’s and AMD’s plans, Intel is almost certainly considering a future heterogeneous x86 chip.

Heterogeneous processors are nothing new to HPC. For example, in classic vector-based supercomputers like the Cray 1, the processor was a heterogeneous mix of distinct scalar and vector units. The reason nobody talked about the vector component as an accelerator was because both units shared the same memory space. But unlike the custom design of the Cray 1 processor, the new breed of heterogeneous chips will be based on commodity architectures — x86, ARM, and NVIDIA or AMD GPUs.

When fat cores (the CPU) and thin cores (the accelerator) are integrated, their roles could become reversed in some sense. According to Shalf, the accelerator cores should be devoted to the application, since they are much more efficient at pure computation, sequential or parallel. He thinks the fat cores should be used primarily for operation system functions; these are infrequent occurrences, but ones that require a lot of energy and time. “It completely breaks the old paradigm,” says Shalf.

As these specialized units become integrated into the processor, the notion of accelerators could fade away entirely. Just as floating point units and memory management units were swallowed on-chip, the accelerator would just become another processor component. At that point, compilers would have a much easier time of making the accelerator invisible to the application developer. And for them, that’s the Holy Grail.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Researchers Train Fluid Dynamics Neural Networks on Supercomputers

January 21, 2021

Fluid dynamics simulations are critical for applications ranging from wind turbine design to aircraft optimization. Running these simulations through direct numerical simulations, however, is computationally costly. Many Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This