Heterogeneous Computing and HPC Accelerators, Disruptive Technologies in the Making

By Michael Feldman

June 18, 2011

At this week’s International Supercomputing Conference in Hamburg, Germany, two of the biggest topics on the agenda are heterogeneous architectures and GPU/accelerator computing. Those emerging trends are joined at the hip, thanks mostly to the efforts of NVIDIA and their industry partners. Intel’s ongoing plans for its Many Integrated Core (MIC) co-processor and AMD’s introduction of its CPU-GPU “Fusion” processors are yet additional indications that the industry is moving to an architecture where CPUs married to accelerators will provide the next big seismic shift in high performance computing.

And just in time. The HPC community has known for awhile that conventional CPUs, at least in their x86 form, will not be a practical path to exascale computing. That’s not just academic theory. HPC vendors and users have come to realize that commodity CPU-based computing, even with multicore parallelism, can only go so far, performance-wise.

But is the emerging HPC heterogeneous architecture with discrete GPUs or Intel MIC co-processors just another dead end as well? That’s what we set to find out in a recent conversations with John Shalf, who heads up the Advanced Technologies Group at the National Energy Research Scientific Computing Center (NERSC) in Berkeley, California. Shalf has given a lot of thought to this new computing paradigm, and at ISC’11 he’ll be moderating a panel entitled Heterogeneous Systems & Their Challenges to HPC Systems.

Like all HPC researchers, Shalf is well aware of the impact of general-purpose GPUs and other accelerators in the supercomputing realm. And while he believes heterogeneous architectures will be the future of HPC, he is skeptical of the current implementations. Shalf has two main objections to the today’s model: 1) the awkwardness of the accelerator as an external processor and 2) what he sees as significant shortcomings in the available programming models.

Like many in the industry, Shalf thinks relegating the accelerator to an external PCI device negates a lot of the performance advantages inherent in vector-like processors. The problem is that the time taken to transfer data between main CPU memory and local memory on the accelerator card via a relatively slow PCI Express (PCIe) connection can nullify any performance advantages gained by offloading the CPU. In essence, this has cast the co-processor as an I/O device.

But it’s not just a performance issue. The external accelerator setup also drives Shalf’s larger criticism — that of the programming model. Having separate memory spaces for the CPU and accelerator means the application has to account for moving data back and forth between processors. And in Shalf’s estimation, performing this data shuffle across the PCIe bus is tedious, error-prone, and complicates algorithm design.

On that last point, because data management is so critical to accelerator performance, the associated code often must be intermingled with the algorithm itself. In fact from Shalf’s perspective, the lack of a unified memory space is a much larger issue than the difficulties entailed in porting codes to CUDA, OpenCL, OpenMP, or any other kind of parallel programming framework. “My concern with accelerators hanging off of PCI Express is that they distract us from the core issue of expressing parallelism.”

Then there are the programming models themselves. Although Shalf recognizes that NVIDIA’s CUDA programming environment is the most established and the most performance-friendly software environment for GPU computing, it is by definition, proprietary. “Anybody who has any history in computing has very little stomach for single-vendor solutions,” he says.

OpenCL, on the other hand, is a hardware-independent, but not as mature as CUDA, and is unproven for performance-critical applications. Compiler directives offer a higher level framework, but as we’ll see in a moment, it has its own challenges.

Despite those reservations, there have been GPU computing success stories at Shalf’s NERSC. In particular, scientists with quantum chromodynamics (QCD) and quantum chemistry applications have hand-coded the underlying algorithms in CUDA and are enjoying some nice application speedups. In these cases, the codes are reasonably compact and amenable to GPU porting, so the programming effort is within the reach of small teams of developers.

For larger more complex legacy codes, the compiler directives approach offers a higher level alternative for programming accelerators. In this case, special directives are inserted into C or Fortran source to instruct the compiler to generate low-level instructions for the accelerator. The nice feature here is that such directives are ignored by compilers that don’t support them. So as long as the original source code around the directives can be left alone, the application can be transferred from target to target, with just a recompilation.

PGI and CAPS enterprise have commercial compiler products for GPUs based on their own directive schemes, and the OpenMP group is developing an open-standards version for accelerators. All have the advantage of allowing developers to build on top of existing high-level source code, while maintaining some semblance of hardware independence.

But according to Shalf, the performance results on GPUs for existing directives implementations have not been promising thus far. Some of this has to do with the fact the directives don’t address on-chip data stores (non-cache coherent shared memory and registers), which need to be explicitly managed for optimal performance. That management is level up to the intelligence of compilers, and Shalf is skeptical that they can deliver this level of sophistication.

Furthermore, the directives only partially hide the data management problem, so the application programmer will still be saddled with this distraction. OpenMP-supported compilers for the Intel MIC platform may yield better results, but that work is in its preliminary stages.

As far as maintaining target independence, from what Shalf has seen, the application of these directives tends to mangle the application source. As a result, in many cases it won’t be possible maintain separate code bases for CPU-only and various accelerator versions, negating one of the main advantages of this approach. Shalf says the current joke going around the community is that the total amount of text in the accelerator directives exceeds the amount of source code that you’re applying those directives to. “The environment is just not ready for the average user to hop onboard,” he says.

Fortunately, the accelerator chip vendors seem headed toward integrated CPU-accelerator processors, doing away with the PCIe bus performance limitations and the associated memory management. AMD is furthest along in this regard with its Fusion processors, although the first iterations announced this year are all aimed at client-side computing. NVIDIA’s “Project Denver” aims to marry ARM CPUs with future GPU cores in the 2013-2014 timeframe and will address server and HPC platforms. Intel has not publicly stated its intentions to have its MIC co-processor sharing silicon with Xeons, but given NVIDIA’s and AMD’s plans, Intel is almost certainly considering a future heterogeneous x86 chip.

Heterogeneous processors are nothing new to HPC. For example, in classic vector-based supercomputers like the Cray 1, the processor was a heterogeneous mix of distinct scalar and vector units. The reason nobody talked about the vector component as an accelerator was because both units shared the same memory space. But unlike the custom design of the Cray 1 processor, the new breed of heterogeneous chips will be based on commodity architectures — x86, ARM, and NVIDIA or AMD GPUs.

When fat cores (the CPU) and thin cores (the accelerator) are integrated, their roles could become reversed in some sense. According to Shalf, the accelerator cores should be devoted to the application, since they are much more efficient at pure computation, sequential or parallel. He thinks the fat cores should be used primarily for operation system functions; these are infrequent occurrences, but ones that require a lot of energy and time. “It completely breaks the old paradigm,” says Shalf.

As these specialized units become integrated into the processor, the notion of accelerators could fade away entirely. Just as floating point units and memory management units were swallowed on-chip, the accelerator would just become another processor component. At that point, compilers would have a much easier time of making the accelerator invisible to the application developer. And for them, that’s the Holy Grail.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This