Heterogeneous Computing and HPC Accelerators, Disruptive Technologies in the Making

By Michael Feldman

June 18, 2011

At this week’s International Supercomputing Conference in Hamburg, Germany, two of the biggest topics on the agenda are heterogeneous architectures and GPU/accelerator computing. Those emerging trends are joined at the hip, thanks mostly to the efforts of NVIDIA and their industry partners. Intel’s ongoing plans for its Many Integrated Core (MIC) co-processor and AMD’s introduction of its CPU-GPU “Fusion” processors are yet additional indications that the industry is moving to an architecture where CPUs married to accelerators will provide the next big seismic shift in high performance computing.

And just in time. The HPC community has known for awhile that conventional CPUs, at least in their x86 form, will not be a practical path to exascale computing. That’s not just academic theory. HPC vendors and users have come to realize that commodity CPU-based computing, even with multicore parallelism, can only go so far, performance-wise.

But is the emerging HPC heterogeneous architecture with discrete GPUs or Intel MIC co-processors just another dead end as well? That’s what we set to find out in a recent conversations with John Shalf, who heads up the Advanced Technologies Group at the National Energy Research Scientific Computing Center (NERSC) in Berkeley, California. Shalf has given a lot of thought to this new computing paradigm, and at ISC’11 he’ll be moderating a panel entitled Heterogeneous Systems & Their Challenges to HPC Systems.

Like all HPC researchers, Shalf is well aware of the impact of general-purpose GPUs and other accelerators in the supercomputing realm. And while he believes heterogeneous architectures will be the future of HPC, he is skeptical of the current implementations. Shalf has two main objections to the today’s model: 1) the awkwardness of the accelerator as an external processor and 2) what he sees as significant shortcomings in the available programming models.

Like many in the industry, Shalf thinks relegating the accelerator to an external PCI device negates a lot of the performance advantages inherent in vector-like processors. The problem is that the time taken to transfer data between main CPU memory and local memory on the accelerator card via a relatively slow PCI Express (PCIe) connection can nullify any performance advantages gained by offloading the CPU. In essence, this has cast the co-processor as an I/O device.

But it’s not just a performance issue. The external accelerator setup also drives Shalf’s larger criticism — that of the programming model. Having separate memory spaces for the CPU and accelerator means the application has to account for moving data back and forth between processors. And in Shalf’s estimation, performing this data shuffle across the PCIe bus is tedious, error-prone, and complicates algorithm design.

On that last point, because data management is so critical to accelerator performance, the associated code often must be intermingled with the algorithm itself. In fact from Shalf’s perspective, the lack of a unified memory space is a much larger issue than the difficulties entailed in porting codes to CUDA, OpenCL, OpenMP, or any other kind of parallel programming framework. “My concern with accelerators hanging off of PCI Express is that they distract us from the core issue of expressing parallelism.”

Then there are the programming models themselves. Although Shalf recognizes that NVIDIA’s CUDA programming environment is the most established and the most performance-friendly software environment for GPU computing, it is by definition, proprietary. “Anybody who has any history in computing has very little stomach for single-vendor solutions,” he says.

OpenCL, on the other hand, is a hardware-independent, but not as mature as CUDA, and is unproven for performance-critical applications. Compiler directives offer a higher level framework, but as we’ll see in a moment, it has its own challenges.

Despite those reservations, there have been GPU computing success stories at Shalf’s NERSC. In particular, scientists with quantum chromodynamics (QCD) and quantum chemistry applications have hand-coded the underlying algorithms in CUDA and are enjoying some nice application speedups. In these cases, the codes are reasonably compact and amenable to GPU porting, so the programming effort is within the reach of small teams of developers.

For larger more complex legacy codes, the compiler directives approach offers a higher level alternative for programming accelerators. In this case, special directives are inserted into C or Fortran source to instruct the compiler to generate low-level instructions for the accelerator. The nice feature here is that such directives are ignored by compilers that don’t support them. So as long as the original source code around the directives can be left alone, the application can be transferred from target to target, with just a recompilation.

PGI and CAPS enterprise have commercial compiler products for GPUs based on their own directive schemes, and the OpenMP group is developing an open-standards version for accelerators. All have the advantage of allowing developers to build on top of existing high-level source code, while maintaining some semblance of hardware independence.

But according to Shalf, the performance results on GPUs for existing directives implementations have not been promising thus far. Some of this has to do with the fact the directives don’t address on-chip data stores (non-cache coherent shared memory and registers), which need to be explicitly managed for optimal performance. That management is level up to the intelligence of compilers, and Shalf is skeptical that they can deliver this level of sophistication.

Furthermore, the directives only partially hide the data management problem, so the application programmer will still be saddled with this distraction. OpenMP-supported compilers for the Intel MIC platform may yield better results, but that work is in its preliminary stages.

As far as maintaining target independence, from what Shalf has seen, the application of these directives tends to mangle the application source. As a result, in many cases it won’t be possible maintain separate code bases for CPU-only and various accelerator versions, negating one of the main advantages of this approach. Shalf says the current joke going around the community is that the total amount of text in the accelerator directives exceeds the amount of source code that you’re applying those directives to. “The environment is just not ready for the average user to hop onboard,” he says.

Fortunately, the accelerator chip vendors seem headed toward integrated CPU-accelerator processors, doing away with the PCIe bus performance limitations and the associated memory management. AMD is furthest along in this regard with its Fusion processors, although the first iterations announced this year are all aimed at client-side computing. NVIDIA’s “Project Denver” aims to marry ARM CPUs with future GPU cores in the 2013-2014 timeframe and will address server and HPC platforms. Intel has not publicly stated its intentions to have its MIC co-processor sharing silicon with Xeons, but given NVIDIA’s and AMD’s plans, Intel is almost certainly considering a future heterogeneous x86 chip.

Heterogeneous processors are nothing new to HPC. For example, in classic vector-based supercomputers like the Cray 1, the processor was a heterogeneous mix of distinct scalar and vector units. The reason nobody talked about the vector component as an accelerator was because both units shared the same memory space. But unlike the custom design of the Cray 1 processor, the new breed of heterogeneous chips will be based on commodity architectures — x86, ARM, and NVIDIA or AMD GPUs.

When fat cores (the CPU) and thin cores (the accelerator) are integrated, their roles could become reversed in some sense. According to Shalf, the accelerator cores should be devoted to the application, since they are much more efficient at pure computation, sequential or parallel. He thinks the fat cores should be used primarily for operation system functions; these are infrequent occurrences, but ones that require a lot of energy and time. “It completely breaks the old paradigm,” says Shalf.

As these specialized units become integrated into the processor, the notion of accelerators could fade away entirely. Just as floating point units and memory management units were swallowed on-chip, the accelerator would just become another processor component. At that point, compilers would have a much easier time of making the accelerator invisible to the application developer. And for them, that’s the Holy Grail.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This