Heterogeneous Computing and HPC Accelerators, Disruptive Technologies in the Making

By Michael Feldman

June 18, 2011

At this week’s International Supercomputing Conference in Hamburg, Germany, two of the biggest topics on the agenda are heterogeneous architectures and GPU/accelerator computing. Those emerging trends are joined at the hip, thanks mostly to the efforts of NVIDIA and their industry partners. Intel’s ongoing plans for its Many Integrated Core (MIC) co-processor and AMD’s introduction of its CPU-GPU “Fusion” processors are yet additional indications that the industry is moving to an architecture where CPUs married to accelerators will provide the next big seismic shift in high performance computing.

And just in time. The HPC community has known for awhile that conventional CPUs, at least in their x86 form, will not be a practical path to exascale computing. That’s not just academic theory. HPC vendors and users have come to realize that commodity CPU-based computing, even with multicore parallelism, can only go so far, performance-wise.

But is the emerging HPC heterogeneous architecture with discrete GPUs or Intel MIC co-processors just another dead end as well? That’s what we set to find out in a recent conversations with John Shalf, who heads up the Advanced Technologies Group at the National Energy Research Scientific Computing Center (NERSC) in Berkeley, California. Shalf has given a lot of thought to this new computing paradigm, and at ISC’11 he’ll be moderating a panel entitled Heterogeneous Systems & Their Challenges to HPC Systems.

Like all HPC researchers, Shalf is well aware of the impact of general-purpose GPUs and other accelerators in the supercomputing realm. And while he believes heterogeneous architectures will be the future of HPC, he is skeptical of the current implementations. Shalf has two main objections to the today’s model: 1) the awkwardness of the accelerator as an external processor and 2) what he sees as significant shortcomings in the available programming models.

Like many in the industry, Shalf thinks relegating the accelerator to an external PCI device negates a lot of the performance advantages inherent in vector-like processors. The problem is that the time taken to transfer data between main CPU memory and local memory on the accelerator card via a relatively slow PCI Express (PCIe) connection can nullify any performance advantages gained by offloading the CPU. In essence, this has cast the co-processor as an I/O device.

But it’s not just a performance issue. The external accelerator setup also drives Shalf’s larger criticism — that of the programming model. Having separate memory spaces for the CPU and accelerator means the application has to account for moving data back and forth between processors. And in Shalf’s estimation, performing this data shuffle across the PCIe bus is tedious, error-prone, and complicates algorithm design.

On that last point, because data management is so critical to accelerator performance, the associated code often must be intermingled with the algorithm itself. In fact from Shalf’s perspective, the lack of a unified memory space is a much larger issue than the difficulties entailed in porting codes to CUDA, OpenCL, OpenMP, or any other kind of parallel programming framework. “My concern with accelerators hanging off of PCI Express is that they distract us from the core issue of expressing parallelism.”

Then there are the programming models themselves. Although Shalf recognizes that NVIDIA’s CUDA programming environment is the most established and the most performance-friendly software environment for GPU computing, it is by definition, proprietary. “Anybody who has any history in computing has very little stomach for single-vendor solutions,” he says.

OpenCL, on the other hand, is a hardware-independent, but not as mature as CUDA, and is unproven for performance-critical applications. Compiler directives offer a higher level framework, but as we’ll see in a moment, it has its own challenges.

Despite those reservations, there have been GPU computing success stories at Shalf’s NERSC. In particular, scientists with quantum chromodynamics (QCD) and quantum chemistry applications have hand-coded the underlying algorithms in CUDA and are enjoying some nice application speedups. In these cases, the codes are reasonably compact and amenable to GPU porting, so the programming effort is within the reach of small teams of developers.

For larger more complex legacy codes, the compiler directives approach offers a higher level alternative for programming accelerators. In this case, special directives are inserted into C or Fortran source to instruct the compiler to generate low-level instructions for the accelerator. The nice feature here is that such directives are ignored by compilers that don’t support them. So as long as the original source code around the directives can be left alone, the application can be transferred from target to target, with just a recompilation.

PGI and CAPS enterprise have commercial compiler products for GPUs based on their own directive schemes, and the OpenMP group is developing an open-standards version for accelerators. All have the advantage of allowing developers to build on top of existing high-level source code, while maintaining some semblance of hardware independence.

But according to Shalf, the performance results on GPUs for existing directives implementations have not been promising thus far. Some of this has to do with the fact the directives don’t address on-chip data stores (non-cache coherent shared memory and registers), which need to be explicitly managed for optimal performance. That management is level up to the intelligence of compilers, and Shalf is skeptical that they can deliver this level of sophistication.

Furthermore, the directives only partially hide the data management problem, so the application programmer will still be saddled with this distraction. OpenMP-supported compilers for the Intel MIC platform may yield better results, but that work is in its preliminary stages.

As far as maintaining target independence, from what Shalf has seen, the application of these directives tends to mangle the application source. As a result, in many cases it won’t be possible maintain separate code bases for CPU-only and various accelerator versions, negating one of the main advantages of this approach. Shalf says the current joke going around the community is that the total amount of text in the accelerator directives exceeds the amount of source code that you’re applying those directives to. “The environment is just not ready for the average user to hop onboard,” he says.

Fortunately, the accelerator chip vendors seem headed toward integrated CPU-accelerator processors, doing away with the PCIe bus performance limitations and the associated memory management. AMD is furthest along in this regard with its Fusion processors, although the first iterations announced this year are all aimed at client-side computing. NVIDIA’s “Project Denver” aims to marry ARM CPUs with future GPU cores in the 2013-2014 timeframe and will address server and HPC platforms. Intel has not publicly stated its intentions to have its MIC co-processor sharing silicon with Xeons, but given NVIDIA’s and AMD’s plans, Intel is almost certainly considering a future heterogeneous x86 chip.

Heterogeneous processors are nothing new to HPC. For example, in classic vector-based supercomputers like the Cray 1, the processor was a heterogeneous mix of distinct scalar and vector units. The reason nobody talked about the vector component as an accelerator was because both units shared the same memory space. But unlike the custom design of the Cray 1 processor, the new breed of heterogeneous chips will be based on commodity architectures — x86, ARM, and NVIDIA or AMD GPUs.

When fat cores (the CPU) and thin cores (the accelerator) are integrated, their roles could become reversed in some sense. According to Shalf, the accelerator cores should be devoted to the application, since they are much more efficient at pure computation, sequential or parallel. He thinks the fat cores should be used primarily for operation system functions; these are infrequent occurrences, but ones that require a lot of energy and time. “It completely breaks the old paradigm,” says Shalf.

As these specialized units become integrated into the processor, the notion of accelerators could fade away entirely. Just as floating point units and memory management units were swallowed on-chip, the accelerator would just become another processor component. At that point, compilers would have a much easier time of making the accelerator invisible to the application developer. And for them, that’s the Holy Grail.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

From Exasperation to Exascale: HPE’s Nic Dubé on Frontier’s Untold Story

December 2, 2022

The Frontier supercomputer – still fresh off its chart-topping 1.1 Linpack exaflops run and maintaining its number-one spot on the Top500 list – was still very much in the spotlight at SC22 in Dallas last month. Six Read more…

At SC22, Carbon Emissions and Energy Costs Eclipsed Hardware Efficiency

December 2, 2022

The race to ever-better flops-per-watt and power usage effectiveness (PUE) has, historically, dominated the conversation over sustainability in HPC – but at SC22, held last month in Dallas, something felt different. Ac Read more…

HPC Career Notes: December 2022 Edition

December 1, 2022

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

IBM Quantum Summit: Osprey Flies; Error Handling Progress; Quantum-centric Supercomputing

December 1, 2022

Part scorecard, part grand vision, IBM’s annual Quantum Summit held last month is a fascinating snapshot of IBM’s progress, evolving technology roadmap, and issues facing the quantum landscape broadly. Thankfully, IB Read more…

AWS Introduces a Flurry of New EC2 Instances at re:Invent

November 30, 2022

AWS has announced three new Amazon Elastic Compute Cloud (Amazon EC2) instances powered by AWS-designed chips, as well as several new Intel-powered instances – including ones targeting HPC – at its AWS re:Invent 2022 Read more…

AWS Solution Channel

Shutterstock 110419589

Thank you for visiting AWS at SC22

Accelerate high performance computing (HPC) solutions with AWS. We make extreme-scale compute possible so that you can solve some of the world’s toughest environmental, social, health, and scientific challenges. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaboration, an Intel executive said last week. There are close t Read more…

From Exasperation to Exascale: HPE’s Nic Dubé on Frontier’s Untold Story

December 2, 2022

The Frontier supercomputer – still fresh off its chart-topping 1.1 Linpack exaflops run and maintaining its number-one spot on the Top500 list – was still v Read more…

At SC22, Carbon Emissions and Energy Costs Eclipsed Hardware Efficiency

December 2, 2022

The race to ever-better flops-per-watt and power usage effectiveness (PUE) has, historically, dominated the conversation over sustainability in HPC – but at S Read more…

HPC Career Notes: December 2022 Edition

December 1, 2022

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it Read more…

IBM Quantum Summit: Osprey Flies; Error Handling Progress; Quantum-centric Supercomputing

December 1, 2022

Part scorecard, part grand vision, IBM’s annual Quantum Summit held last month is a fascinating snapshot of IBM’s progress, evolving technology roadmap, and Read more…

AWS Introduces a Flurry of New EC2 Instances at re:Invent

November 30, 2022

AWS has announced three new Amazon Elastic Compute Cloud (Amazon EC2) instances powered by AWS-designed chips, as well as several new Intel-powered instances Read more…

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaborat Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the c Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Leading Solution Providers

Contributors

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire