Heterogeneous Computing and HPC Accelerators, Disruptive Technologies in the Making

By Michael Feldman

June 18, 2011

At this week’s International Supercomputing Conference in Hamburg, Germany, two of the biggest topics on the agenda are heterogeneous architectures and GPU/accelerator computing. Those emerging trends are joined at the hip, thanks mostly to the efforts of NVIDIA and their industry partners. Intel’s ongoing plans for its Many Integrated Core (MIC) co-processor and AMD’s introduction of its CPU-GPU “Fusion” processors are yet additional indications that the industry is moving to an architecture where CPUs married to accelerators will provide the next big seismic shift in high performance computing.

And just in time. The HPC community has known for awhile that conventional CPUs, at least in their x86 form, will not be a practical path to exascale computing. That’s not just academic theory. HPC vendors and users have come to realize that commodity CPU-based computing, even with multicore parallelism, can only go so far, performance-wise.

But is the emerging HPC heterogeneous architecture with discrete GPUs or Intel MIC co-processors just another dead end as well? That’s what we set to find out in a recent conversations with John Shalf, who heads up the Advanced Technologies Group at the National Energy Research Scientific Computing Center (NERSC) in Berkeley, California. Shalf has given a lot of thought to this new computing paradigm, and at ISC’11 he’ll be moderating a panel entitled Heterogeneous Systems & Their Challenges to HPC Systems.

Like all HPC researchers, Shalf is well aware of the impact of general-purpose GPUs and other accelerators in the supercomputing realm. And while he believes heterogeneous architectures will be the future of HPC, he is skeptical of the current implementations. Shalf has two main objections to the today’s model: 1) the awkwardness of the accelerator as an external processor and 2) what he sees as significant shortcomings in the available programming models.

Like many in the industry, Shalf thinks relegating the accelerator to an external PCI device negates a lot of the performance advantages inherent in vector-like processors. The problem is that the time taken to transfer data between main CPU memory and local memory on the accelerator card via a relatively slow PCI Express (PCIe) connection can nullify any performance advantages gained by offloading the CPU. In essence, this has cast the co-processor as an I/O device.

But it’s not just a performance issue. The external accelerator setup also drives Shalf’s larger criticism — that of the programming model. Having separate memory spaces for the CPU and accelerator means the application has to account for moving data back and forth between processors. And in Shalf’s estimation, performing this data shuffle across the PCIe bus is tedious, error-prone, and complicates algorithm design.

On that last point, because data management is so critical to accelerator performance, the associated code often must be intermingled with the algorithm itself. In fact from Shalf’s perspective, the lack of a unified memory space is a much larger issue than the difficulties entailed in porting codes to CUDA, OpenCL, OpenMP, or any other kind of parallel programming framework. “My concern with accelerators hanging off of PCI Express is that they distract us from the core issue of expressing parallelism.”

Then there are the programming models themselves. Although Shalf recognizes that NVIDIA’s CUDA programming environment is the most established and the most performance-friendly software environment for GPU computing, it is by definition, proprietary. “Anybody who has any history in computing has very little stomach for single-vendor solutions,” he says.

OpenCL, on the other hand, is a hardware-independent, but not as mature as CUDA, and is unproven for performance-critical applications. Compiler directives offer a higher level framework, but as we’ll see in a moment, it has its own challenges.

Despite those reservations, there have been GPU computing success stories at Shalf’s NERSC. In particular, scientists with quantum chromodynamics (QCD) and quantum chemistry applications have hand-coded the underlying algorithms in CUDA and are enjoying some nice application speedups. In these cases, the codes are reasonably compact and amenable to GPU porting, so the programming effort is within the reach of small teams of developers.

For larger more complex legacy codes, the compiler directives approach offers a higher level alternative for programming accelerators. In this case, special directives are inserted into C or Fortran source to instruct the compiler to generate low-level instructions for the accelerator. The nice feature here is that such directives are ignored by compilers that don’t support them. So as long as the original source code around the directives can be left alone, the application can be transferred from target to target, with just a recompilation.

PGI and CAPS enterprise have commercial compiler products for GPUs based on their own directive schemes, and the OpenMP group is developing an open-standards version for accelerators. All have the advantage of allowing developers to build on top of existing high-level source code, while maintaining some semblance of hardware independence.

But according to Shalf, the performance results on GPUs for existing directives implementations have not been promising thus far. Some of this has to do with the fact the directives don’t address on-chip data stores (non-cache coherent shared memory and registers), which need to be explicitly managed for optimal performance. That management is level up to the intelligence of compilers, and Shalf is skeptical that they can deliver this level of sophistication.

Furthermore, the directives only partially hide the data management problem, so the application programmer will still be saddled with this distraction. OpenMP-supported compilers for the Intel MIC platform may yield better results, but that work is in its preliminary stages.

As far as maintaining target independence, from what Shalf has seen, the application of these directives tends to mangle the application source. As a result, in many cases it won’t be possible maintain separate code bases for CPU-only and various accelerator versions, negating one of the main advantages of this approach. Shalf says the current joke going around the community is that the total amount of text in the accelerator directives exceeds the amount of source code that you’re applying those directives to. “The environment is just not ready for the average user to hop onboard,” he says.

Fortunately, the accelerator chip vendors seem headed toward integrated CPU-accelerator processors, doing away with the PCIe bus performance limitations and the associated memory management. AMD is furthest along in this regard with its Fusion processors, although the first iterations announced this year are all aimed at client-side computing. NVIDIA’s “Project Denver” aims to marry ARM CPUs with future GPU cores in the 2013-2014 timeframe and will address server and HPC platforms. Intel has not publicly stated its intentions to have its MIC co-processor sharing silicon with Xeons, but given NVIDIA’s and AMD’s plans, Intel is almost certainly considering a future heterogeneous x86 chip.

Heterogeneous processors are nothing new to HPC. For example, in classic vector-based supercomputers like the Cray 1, the processor was a heterogeneous mix of distinct scalar and vector units. The reason nobody talked about the vector component as an accelerator was because both units shared the same memory space. But unlike the custom design of the Cray 1 processor, the new breed of heterogeneous chips will be based on commodity architectures — x86, ARM, and NVIDIA or AMD GPUs.

When fat cores (the CPU) and thin cores (the accelerator) are integrated, their roles could become reversed in some sense. According to Shalf, the accelerator cores should be devoted to the application, since they are much more efficient at pure computation, sequential or parallel. He thinks the fat cores should be used primarily for operation system functions; these are infrequent occurrences, but ones that require a lot of energy and time. “It completely breaks the old paradigm,” says Shalf.

As these specialized units become integrated into the processor, the notion of accelerators could fade away entirely. Just as floating point units and memory management units were swallowed on-chip, the accelerator would just become another processor component. At that point, compilers would have a much easier time of making the accelerator invisible to the application developer. And for them, that’s the Holy Grail.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This