Intel Touts Manycore Coprocessor at Supercomputing Conference

By Michael Feldman

June 20, 2011

Today at the International Supercomputing Conference (ISC) in Hamburg, Germany, Intel outlined the progress it has made over the last year toward bringing its Many Integrated Core (MIC) coprocessor platform to market. MIC is Intel’s answer to general-purpose GPU computing, and like the latter technology, Intel believes it can parlay the its manycore design into future exascale systems.

Recycling the design from the aborted Larrabee graphics processor effort, MIC was recast as an high performance coprocessor for HPC. This product redirection was unveiled in May 2010 during last year’s ISC event. Since then Intel has been passing out MIC software development platforms (SDPs) to selected users in the HPC community.

An SDP is basically a Knights Ferry coprocessor card (the MIC prototype) with up to two GB of GDDR5 memory. The card is hooked up, via PCIe, to a host system with one or more Xeon CPUs.

In a press briefing on June 14, Anthony Neal-Graves, Intel VP and General Manager of Workstations and MIC Computing, reported that at this time last year, they had 10 users running code on Knights Ferry platform. By the end of this month, they’ll have about 50 such users, with the goal of hitting 100 by the end of 2011. According to Neal-Graves, everything was on track for the launch of the first commercial MIC product, known as Knights Corner.

Knights Corner, he said, would arrive in 2012 using Intel’s newly hatched tri-gate 22nm process node. With perhaps an indirect inference to NVIDIA’s and AMD’s GPU computing prowess, Neal-Graves noted that they’ll be able to use their 22nm technology to deliver cheaper, faster and more power-efficient silicon than their competition, adding, “That’s really going to bring the performance to the table that we really need for these types of solutions.”

Performance-wise, MIC has to be able to hit a rather fast-moving target thanks to NVIDIA and AMD upping the FLOPS count for GPUs over the last few years. There are not a lot of performance metrics available for the Knights Ferry prototype, but Intel does claim a one teraflop value for the SGEMM benchmark (measuring a simple single precision matrix multiply). An equivalent value for the latest NVIDIA Tesla part, the M2090, would probably be in the neighborhood of 800 to 900 gigaflops, and perhaps twice that for the the FireStream 9370.

Since Knights Ferry is a 32-core processor (on 45nm technology), the 50-plus-core Knights Corner commercial product coming out next year should easily double the performance numbers of the prototype. But 2012 will also see the introduction of NVIDIA’s “Kepler” GPU, an architecture that aims to triple the performance of the current generation Fermi parts. Also, since Intel has not released any performance numbers for double precision floating point code, it remains to be seen how MIC will perform in this important realm.

Regardless of how the FLOPS shake out, Intel’s is claiming their biggest advantage will be on the software side, since they are promising MIC support under the chipmaker’s existing x86 developer toolset. Specifically, the company is inserting MIC support in their C and Fortran compilers, debuggers, libraries, and even their more exotic offerings, like Cilk Plus, and Threading Building Blocks. And since MIC is fundamentally an x86 manycore processor (with 512-bit wide vector units), even the low-level code structures are similar. The idea is to provide a common programming environment for the x86 developer, or as Neal-Graves put it: “If you can program a Xeon, you can program a MIC processor.”

For simple pieces of code, like the aforementioned SGEMM function, the 18 lines of code that performed the matrix math was identical for the Xeon and Knights Ferry versions. In this case, the Intel compiler and Math Kernel Library (MKL) performed the heavy lifting to execute the Xeon- or MIC-specific code as appropriate.

That shouldn’t lull developers into thinking they can recompile an entire application for MIC. In most cases, they are going to have to modify the source to parallelize their code or the coprocess. If the existing code is already instrumented with OpenMP directives, developers should have a leg up. Intel has implemented OpenMP support for MIC, along with some directive extensions to deal with the coprocessor setup. In general though, the developer can apply the same OpenMP task parallelization model they used for Xeon to MIC.

In fact, the Innovative Systems Lab (ISL) at the National Center for Supercomputing Applications (NCSA) has ported a couple of science codes to Knights Ferry — one a benchmark code, the other a full astronomy application. The benchmark code was used get familar with the software development process, while the astronomy code was a proof-of-concept test for a full application port.

According to Mike Showerman, the Technical Program Manager at ISL, the application code was already written with accelerators in mind, so the initial port was relatively straightforward. Much of effort (which is still ongoing) involves tuning the code to optimize MIC vectorization. The current Intel compiler performs some MIC auto-vectorization for MIC, but support for the coprocessor not fully baked yet. In fact, most of the components of the MIC software stack are in the “alpha” stage at this point.

Other demonstration of MIC-ported applications, and which will be on display at ISC this week, include an SMMP protein folding application by Forschungszentrum Juelich; a molecular dynamics code at KISTI (Korea Institute of Science & Technology Information); a TifaMMy matrix multiplication code at LRZ (Leibniz Supercomputing Center); and a core scaling benchmark from CERN.

Besides priming the pump for future MIC customers, Intel is also lining up system vendors. At ISC, Knights Ferry systems will be showcased by SGI, IBM, HP, Dell, Colfax, and Supermicro. That’s a quite a bit of vendor enthusiasm, considering this is just prototype hardware, and reflects Intel’s pull in the industry.

Besides confirming that the first MIC product would indeed be on 22nm technology, the press briefing last week gave no new details on Knights Corner. But it’s reasonable to speculate to the 2012 product will support PCIe 3.0 since the new PCI interface should shipping with most new servers by next year (not to mention that the Sandy Bridge Xeons are rumored to incorporate that technology on-chip). Also, no mention was made about ECC memory support, but given ECC is a requirement for serious HPC, and the NVIDIA Fermi Tesla GPUs already support it, it’s almost inconceivable that MIC would be launched without it.

As far as when the actual product would be released in 2012, that was left open. However since Intel has made its two MIC major announcements at ISC, it wouldn’t be surprising if they used next year’s conference to launch Knights Corner.

Beyond that first product, Intel has provided no roadmap. A logical next step would be an integrated Xeon-MIC processor, a la AMD’s Fusion APU and NVIDIA’s ‘Project Denver’ chips, but Intel has been tight-lipped about any such architecture, at least publicly. But given the performance and software friendliness of a unified memory space, heterogeneous processor, Intel has got to be thinking about it.

An integrated Xeon-MIC chip could certainly provide a viable platform for exascale supercomputers, and there is no doubt that Intel wants to be a play in this space. During the press briefing, Neal-Graves repeatedly talked about MIC and exascale in the same breath. The chipmaker’s interest in exascale computing is nothing new, but linking it to a particular architecture certainly is.

“We will be investing in the technology and software capabilities to really bring exascale to reality,” said Neal-Graves. “We’re extremely committed to that and we’re going to make that happen.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENATE’s ambitious mission was to be a proving ground for near- Read more…

By John Russell

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is s Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

  • arrow
  • Click Here for More Headlines
  • arrow
Share This