Intel Touts Manycore Coprocessor at Supercomputing Conference

By Michael Feldman

June 20, 2011

Today at the International Supercomputing Conference (ISC) in Hamburg, Germany, Intel outlined the progress it has made over the last year toward bringing its Many Integrated Core (MIC) coprocessor platform to market. MIC is Intel’s answer to general-purpose GPU computing, and like the latter technology, Intel believes it can parlay the its manycore design into future exascale systems.

Recycling the design from the aborted Larrabee graphics processor effort, MIC was recast as an high performance coprocessor for HPC. This product redirection was unveiled in May 2010 during last year’s ISC event. Since then Intel has been passing out MIC software development platforms (SDPs) to selected users in the HPC community.

An SDP is basically a Knights Ferry coprocessor card (the MIC prototype) with up to two GB of GDDR5 memory. The card is hooked up, via PCIe, to a host system with one or more Xeon CPUs.

In a press briefing on June 14, Anthony Neal-Graves, Intel VP and General Manager of Workstations and MIC Computing, reported that at this time last year, they had 10 users running code on Knights Ferry platform. By the end of this month, they’ll have about 50 such users, with the goal of hitting 100 by the end of 2011. According to Neal-Graves, everything was on track for the launch of the first commercial MIC product, known as Knights Corner.

Knights Corner, he said, would arrive in 2012 using Intel’s newly hatched tri-gate 22nm process node. With perhaps an indirect inference to NVIDIA’s and AMD’s GPU computing prowess, Neal-Graves noted that they’ll be able to use their 22nm technology to deliver cheaper, faster and more power-efficient silicon than their competition, adding, “That’s really going to bring the performance to the table that we really need for these types of solutions.”

Performance-wise, MIC has to be able to hit a rather fast-moving target thanks to NVIDIA and AMD upping the FLOPS count for GPUs over the last few years. There are not a lot of performance metrics available for the Knights Ferry prototype, but Intel does claim a one teraflop value for the SGEMM benchmark (measuring a simple single precision matrix multiply). An equivalent value for the latest NVIDIA Tesla part, the M2090, would probably be in the neighborhood of 800 to 900 gigaflops, and perhaps twice that for the the FireStream 9370.

Since Knights Ferry is a 32-core processor (on 45nm technology), the 50-plus-core Knights Corner commercial product coming out next year should easily double the performance numbers of the prototype. But 2012 will also see the introduction of NVIDIA’s “Kepler” GPU, an architecture that aims to triple the performance of the current generation Fermi parts. Also, since Intel has not released any performance numbers for double precision floating point code, it remains to be seen how MIC will perform in this important realm.

Regardless of how the FLOPS shake out, Intel’s is claiming their biggest advantage will be on the software side, since they are promising MIC support under the chipmaker’s existing x86 developer toolset. Specifically, the company is inserting MIC support in their C and Fortran compilers, debuggers, libraries, and even their more exotic offerings, like Cilk Plus, and Threading Building Blocks. And since MIC is fundamentally an x86 manycore processor (with 512-bit wide vector units), even the low-level code structures are similar. The idea is to provide a common programming environment for the x86 developer, or as Neal-Graves put it: “If you can program a Xeon, you can program a MIC processor.”

For simple pieces of code, like the aforementioned SGEMM function, the 18 lines of code that performed the matrix math was identical for the Xeon and Knights Ferry versions. In this case, the Intel compiler and Math Kernel Library (MKL) performed the heavy lifting to execute the Xeon- or MIC-specific code as appropriate.

That shouldn’t lull developers into thinking they can recompile an entire application for MIC. In most cases, they are going to have to modify the source to parallelize their code or the coprocess. If the existing code is already instrumented with OpenMP directives, developers should have a leg up. Intel has implemented OpenMP support for MIC, along with some directive extensions to deal with the coprocessor setup. In general though, the developer can apply the same OpenMP task parallelization model they used for Xeon to MIC.

In fact, the Innovative Systems Lab (ISL) at the National Center for Supercomputing Applications (NCSA) has ported a couple of science codes to Knights Ferry — one a benchmark code, the other a full astronomy application. The benchmark code was used get familar with the software development process, while the astronomy code was a proof-of-concept test for a full application port.

According to Mike Showerman, the Technical Program Manager at ISL, the application code was already written with accelerators in mind, so the initial port was relatively straightforward. Much of effort (which is still ongoing) involves tuning the code to optimize MIC vectorization. The current Intel compiler performs some MIC auto-vectorization for MIC, but support for the coprocessor not fully baked yet. In fact, most of the components of the MIC software stack are in the “alpha” stage at this point.

Other demonstration of MIC-ported applications, and which will be on display at ISC this week, include an SMMP protein folding application by Forschungszentrum Juelich; a molecular dynamics code at KISTI (Korea Institute of Science & Technology Information); a TifaMMy matrix multiplication code at LRZ (Leibniz Supercomputing Center); and a core scaling benchmark from CERN.

Besides priming the pump for future MIC customers, Intel is also lining up system vendors. At ISC, Knights Ferry systems will be showcased by SGI, IBM, HP, Dell, Colfax, and Supermicro. That’s a quite a bit of vendor enthusiasm, considering this is just prototype hardware, and reflects Intel’s pull in the industry.

Besides confirming that the first MIC product would indeed be on 22nm technology, the press briefing last week gave no new details on Knights Corner. But it’s reasonable to speculate to the 2012 product will support PCIe 3.0 since the new PCI interface should shipping with most new servers by next year (not to mention that the Sandy Bridge Xeons are rumored to incorporate that technology on-chip). Also, no mention was made about ECC memory support, but given ECC is a requirement for serious HPC, and the NVIDIA Fermi Tesla GPUs already support it, it’s almost inconceivable that MIC would be launched without it.

As far as when the actual product would be released in 2012, that was left open. However since Intel has made its two MIC major announcements at ISC, it wouldn’t be surprising if they used next year’s conference to launch Knights Corner.

Beyond that first product, Intel has provided no roadmap. A logical next step would be an integrated Xeon-MIC processor, a la AMD’s Fusion APU and NVIDIA’s ‘Project Denver’ chips, but Intel has been tight-lipped about any such architecture, at least publicly. But given the performance and software friendliness of a unified memory space, heterogeneous processor, Intel has got to be thinking about it.

An integrated Xeon-MIC chip could certainly provide a viable platform for exascale supercomputers, and there is no doubt that Intel wants to be a play in this space. During the press briefing, Neal-Graves repeatedly talked about MIC and exascale in the same breath. The chipmaker’s interest in exascale computing is nothing new, but linking it to a particular architecture certainly is.

“We will be investing in the technology and software capabilities to really bring exascale to reality,” said Neal-Graves. “We’re extremely committed to that and we’re going to make that happen.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Topological Quantum Superconductor Progress Reported

February 20, 2018

Overcoming sensitivity to decoherence is a persistent stumbling block in efforts to build effective quantum computers. Now, a group of researchers from Chalmers University of Technology (Sweden) report progress in devisi Read more…

By John Russell

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This