The 3D Torus Architecture and the Eurotech Approach

By Nicole Hemsoth

June 20, 2011

The 3D Torus architecture and the Eurotech approach

The ability of supercomputers to progressively run job faster meets the computational needs of both scientific research and an increasingly higher number of industry sectors.

Processor power is centerpiece to determine the performance of an HPC system, but it is not the only factor. One of the key aspects of parallel computers is the communication network that interconnects the computing nodes. The network is the one guaranteeing fast interactions between CPUs and allowing the processors to cooperate: this is essential to solve complex computational problems in a fast and efficient way.

Together with speed, HPC systems are increasingly asked to be more available. Downtime can affect a high performance machines quite badly. It appears clear that a reliable average machine with a great uptime is better than a high performance one with a low MTBF (mean time before faults): ultimately, the former would process more jobs in a week than the latter.

One additional challenge with large systems is scalability, so the ability to add nodes to a cluster without affecting performance and reliability or affecting them as little as possible. Petascale and then exascale installations require and will require hundreds of thousands of cores to efficiently work together.

It is also paramount for future machines to consume less energy, being cost and availability of electrical power an issue that is becoming the most demanding challenge to overcome along the road to exascale computing.

3D torus connectivity

In a computer cluster, the way the nodes are connected together could provide some determinant help to solve the above mentioned issues.

Despite being available for quite a while, the torus architecture has now the potential to surge from niche application to mainstream. This is because, like never before, we face nowadays some severe challenges posed by a raising number of nodes. The problem, before being one of performance, is one of topology and scalability. The more a system grows, the more fat tree switched topologies show limits of cost, maintainability, consumption, reliability and, above all, scalability.

Connecting nodes using a 3D Torus configuration means than each node in a cluster is connected to the adjacent ones via short cabling. The signal is routed directly from one node to the other with no need of switches. 3D means that the communication takes places in 6 different “directions”: X+, X-, Y+, Y-, Z+, Z-. In practical terms, each node can be connected to 6 other nodes: in this way, the graph of the connections resembles a tri-dimensional matrix.

Such configuration allows the addition of nodes to a system without degrading performance. Each new node is joint as an addition of a grid, linked to it with no extensive cabling or switching. While scaling linearly, with little or no performance loss, is strictly true for those problems that heavily rely on next neighbor communication, it is also true that, avoiding switches, hundreds of nodes can be added without causing problems of clogged links or busy fat tree switch leafs. This comes without considering that the addition of a node in a large system happens with much less working and potential troubles on a 3D torus network than on switched fat tree one. 

The pairwise connectivity between nearest neighbor nodes of a 3D Torus configuration helps to reduce latency and the typical bottlenecks of switched networks. Being the connections between nodes short and direct, the latency of the links is very low: this affects positively the machine performance, especially for solving local patters problems, which can be effectively mapped onto the matrix mentioned above. The switchless nature of the 3D Torus facilitates fast communication between nodes.

Switches are also potential points of failure. Decreasing their number should improve the operational functioning of a system. In other words, the 3D Torus makes a system more agile, so more prompt to react to failures: if a connection or a node fails, the affected communication can be routed in many different directions. The inherent nature of the 3D Torus is the connectivity of each node to its nearest neighbors to form a tridimensional lattice that guarantees multiple ways for a node to reach another one.

Eliminating costly and power-hungry external spine and leaf switches, as well as their accompanying rack chassis and cooling systems, torus architectures also contribute to reduce installation costs and energy consumption.

Applications

When it comes to applications that can fully benefit from the 3D Torus configuration we could touch one of the caveats of this intelligent connection schema.

The maximization of the performance of the 3D Torus takes place with a subset of problems which is rather large but specific. These are local pattern problems, which typically deal with modeling systems whose functioning/reaction depends on adjacent systems. Typical examples are computer simulations of Lattice QCD and fluid-dynamics. More in general, many Monte Carlo simulations and embarrassingly parallel problems can exploit the full performance advantage of the 3D Torus architecture, making the range of possible applications quite vast, especially within the field of scientific research.

Problems that require all to all dialogue between nodes are less prone to exploit the full performance of the 3D torus interconnection. However, independently from the type of application and problem, the 3D torus still bears the massive advantage of scalability and serviceability, contributing also to increase the availability of the systems and reduce power consumption. In case of large systems, it may be so advantageous to resort to the 3D Torus architecture that the perfect match with the problem that better maximize the computational performance may well become secondary.

The Eurotech approach

It is rather interesting to analyze what Eurotech, a leading European computer manufacturer, has done with the 3D Torus network of their supercomputer line Aurora.

Eurotech wanted to leverage the 3D Torus benefits for their high end products, but at the same time leave to the users the flexibility and the freedom to run all the applications they need.

Taking in account these diverging characteristics, Eurotech and its scientific partners took and approach called Unified Network Architecture in designing the Aurora datacenter clusters. This fundamentally means that the Aurora systems have 3 different networks working in concomitance on the same machine: 2 fast independent networks (Infiniband, 3D Torus) and a multi-level synchronization network.

The coexistence of Infiniband and 3D Torus facilitates flexibility of use: depending on the application, one or the other network can be utilized. The synchronization networks act at different levels, synchronizing the CPUs and de facto reducing or eliminating the OS jitter and hence making the system more scalable.

Torus topologies have traditionally been implemented with proprietary, costly application-specific integrated circuit (ASIC) technology. Eurotech chose to drive the torus with FPGAs, injecting more flexibility in the hardware, and to rely both on a GPL and on a commercial distribution for the 3D torus software. The 3D torus network is managed by a network processor implemented in the FPGAs, which interfaces the system hub through two x8 PCI Express Gen 3 connections, for a total internal bandwidth of 120Gbs.

Each link in the torus architecture is physically implemented by two lines (main and redundant) that can be selected (in software) to configure the machine partitioning (full 3D Torus or one of the many 3D sub-tori available). In this way, redundant channels allow system repartitioning on-the-fly. The possibility of partitioning the system into sub-domains permits to create system partitions that communicate on independent tori, effectively creating different execution domains. In addition, each subdomain can benefit from a dedicated synchronization network.

As an example of partitioning, if a backplane with 16 boards is considered, the available topologies for the partitioning of the machine in smaller sub-machines with periodic boundaries (sub-tori) are:

Half Unit: 2 x [1:2*NC] x [1:2*NR]

Unit: 4 x [1:2*NC] x [1:2*NR]

Double Unit:8 x [1:2*NC] x [1:2*NR], Rack: 8 x 2*NC x 2, Machine: 8 x 2*NC x 2*NR

Chassis: 16 x [1:NC] x [1, 2,  2*NR], Rack: 16 x NC x 2, Machine: 16 x NC x 2*NR

Where

–         NC : Number of chassis in a rack (8).
–         NR : Number of racks in a machine (from 1 to many hundreds)

Partitioning, FPGAs, redundant channels, synchronization networks are some of the unique characteristics that Eurotech wanted in the torus architecture to create Intel based clusters with the flavor of a special machines.

Eurotech

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This