The 3D Torus Architecture and the Eurotech Approach

By Nicole Hemsoth

June 20, 2011

The 3D Torus architecture and the Eurotech approach

The ability of supercomputers to progressively run job faster meets the computational needs of both scientific research and an increasingly higher number of industry sectors.

Processor power is centerpiece to determine the performance of an HPC system, but it is not the only factor. One of the key aspects of parallel computers is the communication network that interconnects the computing nodes. The network is the one guaranteeing fast interactions between CPUs and allowing the processors to cooperate: this is essential to solve complex computational problems in a fast and efficient way.

Together with speed, HPC systems are increasingly asked to be more available. Downtime can affect a high performance machines quite badly. It appears clear that a reliable average machine with a great uptime is better than a high performance one with a low MTBF (mean time before faults): ultimately, the former would process more jobs in a week than the latter.

One additional challenge with large systems is scalability, so the ability to add nodes to a cluster without affecting performance and reliability or affecting them as little as possible. Petascale and then exascale installations require and will require hundreds of thousands of cores to efficiently work together.

It is also paramount for future machines to consume less energy, being cost and availability of electrical power an issue that is becoming the most demanding challenge to overcome along the road to exascale computing.

3D torus connectivity

In a computer cluster, the way the nodes are connected together could provide some determinant help to solve the above mentioned issues.

Despite being available for quite a while, the torus architecture has now the potential to surge from niche application to mainstream. This is because, like never before, we face nowadays some severe challenges posed by a raising number of nodes. The problem, before being one of performance, is one of topology and scalability. The more a system grows, the more fat tree switched topologies show limits of cost, maintainability, consumption, reliability and, above all, scalability.

Connecting nodes using a 3D Torus configuration means than each node in a cluster is connected to the adjacent ones via short cabling. The signal is routed directly from one node to the other with no need of switches. 3D means that the communication takes places in 6 different “directions”: X+, X-, Y+, Y-, Z+, Z-. In practical terms, each node can be connected to 6 other nodes: in this way, the graph of the connections resembles a tri-dimensional matrix.

Such configuration allows the addition of nodes to a system without degrading performance. Each new node is joint as an addition of a grid, linked to it with no extensive cabling or switching. While scaling linearly, with little or no performance loss, is strictly true for those problems that heavily rely on next neighbor communication, it is also true that, avoiding switches, hundreds of nodes can be added without causing problems of clogged links or busy fat tree switch leafs. This comes without considering that the addition of a node in a large system happens with much less working and potential troubles on a 3D torus network than on switched fat tree one. 

The pairwise connectivity between nearest neighbor nodes of a 3D Torus configuration helps to reduce latency and the typical bottlenecks of switched networks. Being the connections between nodes short and direct, the latency of the links is very low: this affects positively the machine performance, especially for solving local patters problems, which can be effectively mapped onto the matrix mentioned above. The switchless nature of the 3D Torus facilitates fast communication between nodes.

Switches are also potential points of failure. Decreasing their number should improve the operational functioning of a system. In other words, the 3D Torus makes a system more agile, so more prompt to react to failures: if a connection or a node fails, the affected communication can be routed in many different directions. The inherent nature of the 3D Torus is the connectivity of each node to its nearest neighbors to form a tridimensional lattice that guarantees multiple ways for a node to reach another one.

Eliminating costly and power-hungry external spine and leaf switches, as well as their accompanying rack chassis and cooling systems, torus architectures also contribute to reduce installation costs and energy consumption.

Applications

When it comes to applications that can fully benefit from the 3D Torus configuration we could touch one of the caveats of this intelligent connection schema.

The maximization of the performance of the 3D Torus takes place with a subset of problems which is rather large but specific. These are local pattern problems, which typically deal with modeling systems whose functioning/reaction depends on adjacent systems. Typical examples are computer simulations of Lattice QCD and fluid-dynamics. More in general, many Monte Carlo simulations and embarrassingly parallel problems can exploit the full performance advantage of the 3D Torus architecture, making the range of possible applications quite vast, especially within the field of scientific research.

Problems that require all to all dialogue between nodes are less prone to exploit the full performance of the 3D torus interconnection. However, independently from the type of application and problem, the 3D torus still bears the massive advantage of scalability and serviceability, contributing also to increase the availability of the systems and reduce power consumption. In case of large systems, it may be so advantageous to resort to the 3D Torus architecture that the perfect match with the problem that better maximize the computational performance may well become secondary.

The Eurotech approach

It is rather interesting to analyze what Eurotech, a leading European computer manufacturer, has done with the 3D Torus network of their supercomputer line Aurora.

Eurotech wanted to leverage the 3D Torus benefits for their high end products, but at the same time leave to the users the flexibility and the freedom to run all the applications they need.

Taking in account these diverging characteristics, Eurotech and its scientific partners took and approach called Unified Network Architecture in designing the Aurora datacenter clusters. This fundamentally means that the Aurora systems have 3 different networks working in concomitance on the same machine: 2 fast independent networks (Infiniband, 3D Torus) and a multi-level synchronization network.

The coexistence of Infiniband and 3D Torus facilitates flexibility of use: depending on the application, one or the other network can be utilized. The synchronization networks act at different levels, synchronizing the CPUs and de facto reducing or eliminating the OS jitter and hence making the system more scalable.

Torus topologies have traditionally been implemented with proprietary, costly application-specific integrated circuit (ASIC) technology. Eurotech chose to drive the torus with FPGAs, injecting more flexibility in the hardware, and to rely both on a GPL and on a commercial distribution for the 3D torus software. The 3D torus network is managed by a network processor implemented in the FPGAs, which interfaces the system hub through two x8 PCI Express Gen 3 connections, for a total internal bandwidth of 120Gbs.

Each link in the torus architecture is physically implemented by two lines (main and redundant) that can be selected (in software) to configure the machine partitioning (full 3D Torus or one of the many 3D sub-tori available). In this way, redundant channels allow system repartitioning on-the-fly. The possibility of partitioning the system into sub-domains permits to create system partitions that communicate on independent tori, effectively creating different execution domains. In addition, each subdomain can benefit from a dedicated synchronization network.

As an example of partitioning, if a backplane with 16 boards is considered, the available topologies for the partitioning of the machine in smaller sub-machines with periodic boundaries (sub-tori) are:

Half Unit: 2 x [1:2*NC] x [1:2*NR]

Unit: 4 x [1:2*NC] x [1:2*NR]

Double Unit:8 x [1:2*NC] x [1:2*NR], Rack: 8 x 2*NC x 2, Machine: 8 x 2*NC x 2*NR

Chassis: 16 x [1:NC] x [1, 2,  2*NR], Rack: 16 x NC x 2, Machine: 16 x NC x 2*NR

Where

–         NC : Number of chassis in a rack (8).
–         NR : Number of racks in a machine (from 1 to many hundreds)

Partitioning, FPGAs, redundant channels, synchronization networks are some of the unique characteristics that Eurotech wanted in the torus architecture to create Intel based clusters with the flavor of a special machines.

Eurotech

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

D-Wave Delivers 5000-qubit System; Targets Quantum Advantage

September 29, 2020

D-Wave today launched its newest and largest quantum annealing computer, a 5000-qubit goliath named Advantage that features 15-way qubit interconnectivity. It also introduced the D-Wave Launch program intended to jump st Read more…

By John Russell

What’s New in Computing vs. COVID-19: AMD, Remdesivir, Fab Spending & More

September 29, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

Global QC Market Projected to Grow to More Than $800 million by 2024

September 28, 2020

The Quantum Economic Development Consortium (QED-C) and Hyperion Research are projecting that the global quantum computing (QC) market - worth an estimated $320 million in 2020 - will grow at an anticipated 27% CAGR betw Read more…

By Staff Reports

DoE’s ASCAC Backs AI for Science Program that Emulates the Exascale Initiative

September 28, 2020

Roughly a year after beginning formal efforts to explore an AI for Science initiative the Department of Energy’s Advanced Scientific Computing Advisory Committee last week accepted a subcommittee report calling for a t Read more…

By John Russell

Supercomputer Research Aims to Supercharge COVID-19 Antiviral Remdesivir

September 25, 2020

Remdesivir is one of a handful of therapeutic antiviral drugs that have been proven to improve outcomes for COVID-19 patients, and as such, is a crucial weapon in the fight against the pandemic – especially in the abse Read more…

By Oliver Peckham

AWS Solution Channel

The Water Institute of the Gulf runs compute-heavy storm surge and wave simulations on AWS

The Water Institute of the Gulf (Water Institute) runs its storm surge and wave analysis models on Amazon Web Services (AWS)—a task that sometimes requires large bursts of compute power. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

NOAA Announces Major Upgrade to Ensemble Forecast Model, Extends Range to 35 Days

September 23, 2020

A bit over a year ago, the United States’ Global Forecast System (GFS) received a major upgrade: a new dynamical core – its first in 40 years – called the finite-volume cubed-sphere, or FV3. Now, the National Oceanic and Atmospheric Administration (NOAA) is bringing the FV3 dynamical core to... Read more…

By Oliver Peckham

D-Wave Delivers 5000-qubit System; Targets Quantum Advantage

September 29, 2020

D-Wave today launched its newest and largest quantum annealing computer, a 5000-qubit goliath named Advantage that features 15-way qubit interconnectivity. It a Read more…

By John Russell

DoE’s ASCAC Backs AI for Science Program that Emulates the Exascale Initiative

September 28, 2020

Roughly a year after beginning formal efforts to explore an AI for Science initiative the Department of Energy’s Advanced Scientific Computing Advisory Commit Read more…

By John Russell

NOAA Announces Major Upgrade to Ensemble Forecast Model, Extends Range to 35 Days

September 23, 2020

A bit over a year ago, the United States’ Global Forecast System (GFS) received a major upgrade: a new dynamical core – its first in 40 years – called the finite-volume cubed-sphere, or FV3. Now, the National Oceanic and Atmospheric Administration (NOAA) is bringing the FV3 dynamical core to... Read more…

By Oliver Peckham

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s second generation N-series platform. The chip IP vendor said the new platforms will deliver 50 percent and 40 percent more... Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie, Tiffany Trader and Todd R. Weiss

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics code. These optimizations will be incorporated into release 2.15 with patches available for earlier versions. Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This