The 3D Torus Architecture and the Eurotech Approach

By Nicole Hemsoth

June 20, 2011

The 3D Torus architecture and the Eurotech approach

The ability of supercomputers to progressively run job faster meets the computational needs of both scientific research and an increasingly higher number of industry sectors.

Processor power is centerpiece to determine the performance of an HPC system, but it is not the only factor. One of the key aspects of parallel computers is the communication network that interconnects the computing nodes. The network is the one guaranteeing fast interactions between CPUs and allowing the processors to cooperate: this is essential to solve complex computational problems in a fast and efficient way.

Together with speed, HPC systems are increasingly asked to be more available. Downtime can affect a high performance machines quite badly. It appears clear that a reliable average machine with a great uptime is better than a high performance one with a low MTBF (mean time before faults): ultimately, the former would process more jobs in a week than the latter.

One additional challenge with large systems is scalability, so the ability to add nodes to a cluster without affecting performance and reliability or affecting them as little as possible. Petascale and then exascale installations require and will require hundreds of thousands of cores to efficiently work together.

It is also paramount for future machines to consume less energy, being cost and availability of electrical power an issue that is becoming the most demanding challenge to overcome along the road to exascale computing.

3D torus connectivity

In a computer cluster, the way the nodes are connected together could provide some determinant help to solve the above mentioned issues.

Despite being available for quite a while, the torus architecture has now the potential to surge from niche application to mainstream. This is because, like never before, we face nowadays some severe challenges posed by a raising number of nodes. The problem, before being one of performance, is one of topology and scalability. The more a system grows, the more fat tree switched topologies show limits of cost, maintainability, consumption, reliability and, above all, scalability.

Connecting nodes using a 3D Torus configuration means than each node in a cluster is connected to the adjacent ones via short cabling. The signal is routed directly from one node to the other with no need of switches. 3D means that the communication takes places in 6 different “directions”: X+, X-, Y+, Y-, Z+, Z-. In practical terms, each node can be connected to 6 other nodes: in this way, the graph of the connections resembles a tri-dimensional matrix.

Such configuration allows the addition of nodes to a system without degrading performance. Each new node is joint as an addition of a grid, linked to it with no extensive cabling or switching. While scaling linearly, with little or no performance loss, is strictly true for those problems that heavily rely on next neighbor communication, it is also true that, avoiding switches, hundreds of nodes can be added without causing problems of clogged links or busy fat tree switch leafs. This comes without considering that the addition of a node in a large system happens with much less working and potential troubles on a 3D torus network than on switched fat tree one. 

The pairwise connectivity between nearest neighbor nodes of a 3D Torus configuration helps to reduce latency and the typical bottlenecks of switched networks. Being the connections between nodes short and direct, the latency of the links is very low: this affects positively the machine performance, especially for solving local patters problems, which can be effectively mapped onto the matrix mentioned above. The switchless nature of the 3D Torus facilitates fast communication between nodes.

Switches are also potential points of failure. Decreasing their number should improve the operational functioning of a system. In other words, the 3D Torus makes a system more agile, so more prompt to react to failures: if a connection or a node fails, the affected communication can be routed in many different directions. The inherent nature of the 3D Torus is the connectivity of each node to its nearest neighbors to form a tridimensional lattice that guarantees multiple ways for a node to reach another one.

Eliminating costly and power-hungry external spine and leaf switches, as well as their accompanying rack chassis and cooling systems, torus architectures also contribute to reduce installation costs and energy consumption.

Applications

When it comes to applications that can fully benefit from the 3D Torus configuration we could touch one of the caveats of this intelligent connection schema.

The maximization of the performance of the 3D Torus takes place with a subset of problems which is rather large but specific. These are local pattern problems, which typically deal with modeling systems whose functioning/reaction depends on adjacent systems. Typical examples are computer simulations of Lattice QCD and fluid-dynamics. More in general, many Monte Carlo simulations and embarrassingly parallel problems can exploit the full performance advantage of the 3D Torus architecture, making the range of possible applications quite vast, especially within the field of scientific research.

Problems that require all to all dialogue between nodes are less prone to exploit the full performance of the 3D torus interconnection. However, independently from the type of application and problem, the 3D torus still bears the massive advantage of scalability and serviceability, contributing also to increase the availability of the systems and reduce power consumption. In case of large systems, it may be so advantageous to resort to the 3D Torus architecture that the perfect match with the problem that better maximize the computational performance may well become secondary.

The Eurotech approach

It is rather interesting to analyze what Eurotech, a leading European computer manufacturer, has done with the 3D Torus network of their supercomputer line Aurora.

Eurotech wanted to leverage the 3D Torus benefits for their high end products, but at the same time leave to the users the flexibility and the freedom to run all the applications they need.

Taking in account these diverging characteristics, Eurotech and its scientific partners took and approach called Unified Network Architecture in designing the Aurora datacenter clusters. This fundamentally means that the Aurora systems have 3 different networks working in concomitance on the same machine: 2 fast independent networks (Infiniband, 3D Torus) and a multi-level synchronization network.

The coexistence of Infiniband and 3D Torus facilitates flexibility of use: depending on the application, one or the other network can be utilized. The synchronization networks act at different levels, synchronizing the CPUs and de facto reducing or eliminating the OS jitter and hence making the system more scalable.

Torus topologies have traditionally been implemented with proprietary, costly application-specific integrated circuit (ASIC) technology. Eurotech chose to drive the torus with FPGAs, injecting more flexibility in the hardware, and to rely both on a GPL and on a commercial distribution for the 3D torus software. The 3D torus network is managed by a network processor implemented in the FPGAs, which interfaces the system hub through two x8 PCI Express Gen 3 connections, for a total internal bandwidth of 120Gbs.

Each link in the torus architecture is physically implemented by two lines (main and redundant) that can be selected (in software) to configure the machine partitioning (full 3D Torus or one of the many 3D sub-tori available). In this way, redundant channels allow system repartitioning on-the-fly. The possibility of partitioning the system into sub-domains permits to create system partitions that communicate on independent tori, effectively creating different execution domains. In addition, each subdomain can benefit from a dedicated synchronization network.

As an example of partitioning, if a backplane with 16 boards is considered, the available topologies for the partitioning of the machine in smaller sub-machines with periodic boundaries (sub-tori) are:

Half Unit: 2 x [1:2*NC] x [1:2*NR]

Unit: 4 x [1:2*NC] x [1:2*NR]

Double Unit:8 x [1:2*NC] x [1:2*NR], Rack: 8 x 2*NC x 2, Machine: 8 x 2*NC x 2*NR

Chassis: 16 x [1:NC] x [1, 2,  2*NR], Rack: 16 x NC x 2, Machine: 16 x NC x 2*NR

Where

–         NC : Number of chassis in a rack (8).
–         NR : Number of racks in a machine (from 1 to many hundreds)

Partitioning, FPGAs, redundant channels, synchronization networks are some of the unique characteristics that Eurotech wanted in the torus architecture to create Intel based clusters with the flavor of a special machines.

Eurotech

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This