The 3D Torus Architecture and the Eurotech Approach

By Nicole Hemsoth

June 20, 2011

The 3D Torus architecture and the Eurotech approach

The ability of supercomputers to progressively run job faster meets the computational needs of both scientific research and an increasingly higher number of industry sectors.

Processor power is centerpiece to determine the performance of an HPC system, but it is not the only factor. One of the key aspects of parallel computers is the communication network that interconnects the computing nodes. The network is the one guaranteeing fast interactions between CPUs and allowing the processors to cooperate: this is essential to solve complex computational problems in a fast and efficient way.

Together with speed, HPC systems are increasingly asked to be more available. Downtime can affect a high performance machines quite badly. It appears clear that a reliable average machine with a great uptime is better than a high performance one with a low MTBF (mean time before faults): ultimately, the former would process more jobs in a week than the latter.

One additional challenge with large systems is scalability, so the ability to add nodes to a cluster without affecting performance and reliability or affecting them as little as possible. Petascale and then exascale installations require and will require hundreds of thousands of cores to efficiently work together.

It is also paramount for future machines to consume less energy, being cost and availability of electrical power an issue that is becoming the most demanding challenge to overcome along the road to exascale computing.

3D torus connectivity

In a computer cluster, the way the nodes are connected together could provide some determinant help to solve the above mentioned issues.

Despite being available for quite a while, the torus architecture has now the potential to surge from niche application to mainstream. This is because, like never before, we face nowadays some severe challenges posed by a raising number of nodes. The problem, before being one of performance, is one of topology and scalability. The more a system grows, the more fat tree switched topologies show limits of cost, maintainability, consumption, reliability and, above all, scalability.

Connecting nodes using a 3D Torus configuration means than each node in a cluster is connected to the adjacent ones via short cabling. The signal is routed directly from one node to the other with no need of switches. 3D means that the communication takes places in 6 different “directions”: X+, X-, Y+, Y-, Z+, Z-. In practical terms, each node can be connected to 6 other nodes: in this way, the graph of the connections resembles a tri-dimensional matrix.

Such configuration allows the addition of nodes to a system without degrading performance. Each new node is joint as an addition of a grid, linked to it with no extensive cabling or switching. While scaling linearly, with little or no performance loss, is strictly true for those problems that heavily rely on next neighbor communication, it is also true that, avoiding switches, hundreds of nodes can be added without causing problems of clogged links or busy fat tree switch leafs. This comes without considering that the addition of a node in a large system happens with much less working and potential troubles on a 3D torus network than on switched fat tree one. 

The pairwise connectivity between nearest neighbor nodes of a 3D Torus configuration helps to reduce latency and the typical bottlenecks of switched networks. Being the connections between nodes short and direct, the latency of the links is very low: this affects positively the machine performance, especially for solving local patters problems, which can be effectively mapped onto the matrix mentioned above. The switchless nature of the 3D Torus facilitates fast communication between nodes.

Switches are also potential points of failure. Decreasing their number should improve the operational functioning of a system. In other words, the 3D Torus makes a system more agile, so more prompt to react to failures: if a connection or a node fails, the affected communication can be routed in many different directions. The inherent nature of the 3D Torus is the connectivity of each node to its nearest neighbors to form a tridimensional lattice that guarantees multiple ways for a node to reach another one.

Eliminating costly and power-hungry external spine and leaf switches, as well as their accompanying rack chassis and cooling systems, torus architectures also contribute to reduce installation costs and energy consumption.

Applications

When it comes to applications that can fully benefit from the 3D Torus configuration we could touch one of the caveats of this intelligent connection schema.

The maximization of the performance of the 3D Torus takes place with a subset of problems which is rather large but specific. These are local pattern problems, which typically deal with modeling systems whose functioning/reaction depends on adjacent systems. Typical examples are computer simulations of Lattice QCD and fluid-dynamics. More in general, many Monte Carlo simulations and embarrassingly parallel problems can exploit the full performance advantage of the 3D Torus architecture, making the range of possible applications quite vast, especially within the field of scientific research.

Problems that require all to all dialogue between nodes are less prone to exploit the full performance of the 3D torus interconnection. However, independently from the type of application and problem, the 3D torus still bears the massive advantage of scalability and serviceability, contributing also to increase the availability of the systems and reduce power consumption. In case of large systems, it may be so advantageous to resort to the 3D Torus architecture that the perfect match with the problem that better maximize the computational performance may well become secondary.

The Eurotech approach

It is rather interesting to analyze what Eurotech, a leading European computer manufacturer, has done with the 3D Torus network of their supercomputer line Aurora.

Eurotech wanted to leverage the 3D Torus benefits for their high end products, but at the same time leave to the users the flexibility and the freedom to run all the applications they need.

Taking in account these diverging characteristics, Eurotech and its scientific partners took and approach called Unified Network Architecture in designing the Aurora datacenter clusters. This fundamentally means that the Aurora systems have 3 different networks working in concomitance on the same machine: 2 fast independent networks (Infiniband, 3D Torus) and a multi-level synchronization network.

The coexistence of Infiniband and 3D Torus facilitates flexibility of use: depending on the application, one or the other network can be utilized. The synchronization networks act at different levels, synchronizing the CPUs and de facto reducing or eliminating the OS jitter and hence making the system more scalable.

Torus topologies have traditionally been implemented with proprietary, costly application-specific integrated circuit (ASIC) technology. Eurotech chose to drive the torus with FPGAs, injecting more flexibility in the hardware, and to rely both on a GPL and on a commercial distribution for the 3D torus software. The 3D torus network is managed by a network processor implemented in the FPGAs, which interfaces the system hub through two x8 PCI Express Gen 3 connections, for a total internal bandwidth of 120Gbs.

Each link in the torus architecture is physically implemented by two lines (main and redundant) that can be selected (in software) to configure the machine partitioning (full 3D Torus or one of the many 3D sub-tori available). In this way, redundant channels allow system repartitioning on-the-fly. The possibility of partitioning the system into sub-domains permits to create system partitions that communicate on independent tori, effectively creating different execution domains. In addition, each subdomain can benefit from a dedicated synchronization network.

As an example of partitioning, if a backplane with 16 boards is considered, the available topologies for the partitioning of the machine in smaller sub-machines with periodic boundaries (sub-tori) are:

Half Unit: 2 x [1:2*NC] x [1:2*NR]

Unit: 4 x [1:2*NC] x [1:2*NR]

Double Unit:8 x [1:2*NC] x [1:2*NR], Rack: 8 x 2*NC x 2, Machine: 8 x 2*NC x 2*NR

Chassis: 16 x [1:NC] x [1, 2,  2*NR], Rack: 16 x NC x 2, Machine: 16 x NC x 2*NR

Where

–         NC : Number of chassis in a rack (8).
–         NR : Number of racks in a machine (from 1 to many hundreds)

Partitioning, FPGAs, redundant channels, synchronization networks are some of the unique characteristics that Eurotech wanted in the torus architecture to create Intel based clusters with the flavor of a special machines.

Eurotech

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This