GPU Challenges: A Q&A with NVIDIA’s David Kirk

By Nicole Hemsoth

June 22, 2011

At ISC this year, there are plenty of sessions devoted to manycore processors, especially in the role of HPC accelerators. Not surprisingly, a lot of these are centered on the current sweetheart of manycore: GPUs. One of the most well-attended sessions here at ISC’11 was “The GPU Debate” between NVIDIA Fellow David Kirk and LSU professor Thomas Sterling, where the two bantered about the architecture, its evolution as a general-purpose HPC processor, and its roadmap to exascale.

HPCwire caught up with Kirk and asked him about some of the specific challenges of GPU computing today and how he views the role of integrated CPU-GPU architectures as they come into play.

HPCwire: Is there any thought at NVIDIA to proposing CUDA as an open standard for the GPU/manycore computing community?

David Kirk: There are no plans to turn CUDA into an open standard at this point. Right now, the only processors we see being deployed widely in servers are x86 CPUs and NVIDIA GPUs and these are all supported by CUDA toolkits today. NVIDIA offers developers choice – choice to use CUDA C, CUDA C++, CUDA Fortran, OpenCL, or DirectCompute to program CPU-GPU systems. We chair the OpenCL working group, we have collaborated closely with Microsoft on DirectCompute and continue to do so as they evolve these platforms. But CUDA is our platform for innovation. We recently released CUDA 4.0, which is a huge leap forward in programmer productivity with features like unified virtual addressing and the new Thrust C++ template library. We continue to move CUDA forward at a rapid pace.

HPCwire: There has been plenty of talk about the problems involved in hanging a GPU processor off of a PCI bus for use as an external accelerator – I/O overhead and the software messiness of having to do explicit data transfers. What do you think are the biggest limitations of the current GPU processors from a hardware point of view, in regard to high performance computing?

Kirk: The PCIe bottleneck concern is hotly debated and we hear about it a lot. We are aware of very few applications that are bottlenecked by transfer speeds. Incidentally, the PCIe bus is often not the slowest bus in the system. Network and disk interfaces are slower, and in many systems the CPU memory path is slower!

That being said, there are two things that have changed since this concern first surfaced. First, we now have 6 GB of on-board memory and second, our new NVIDIA GPUDirect technology is eliminating the CPU and GPU memory bottlenecks from the path.

These enhancements reduce the PCIe bottleneck. Data can directly stream from storage to the GPU memory via GPUDirect and the larger GPU memory enables more data to reside on the GPU without communicating to the CPU. Our future GPU architectures will continue to reduce dependence on and communication with the CPU, thus eventually very significantly limiting the PCIe bottleneck. By the way, Vincent Natoli summarized it nicely in his recent HPCwire article.

I personally believe though, that the biggest limitation of GPU computing is the misconception that it’s too hard. Put this into whichever bucket you wish — ease of use of the software, the programmability of the hardware, the performance, per watt, per dollar. However you slice it, there have been many reasons cited as to why not to adopt GPU computing.

We’ll be the first to say that parallel computing is challenging. I personally co-teach the parallel computing course, along with Dr. Wen-mei Hwu, at the University of Illinois at Urbana-Champaign, so I know first-hand what it is like to switch the mindset from a purely serial based model to thinking about problems in a multi-threaded parallel environment.

But the rewards are significant. Change two percent of your code and in many cases you can see up to a 10X increase in performance. That’s a pretty big bang for your software development buck. And, we live in a parallel computing world now, so serial programming is no longer a viable option.

HPCwire: Same question for software side. What are the biggest limitations of the current GPU computing software frameworks?

Kirk: One of the most common concerns I hear from the community is the portability aspect of CUDA and the fact that it only runs on NVIDIA GPUs. As I said before, we remain agnostic on language. Fortran, Python, C, C++, Java, OpenCL, DirectCompute – we support all these languages, either internally or through 3rd parties. If you choose to use NVIDIA GPUs, then we will ensure that have you the widest choice of languages.

With regards to the portability of the hardware platform, PGI has just announced the first version of CUDA x86, that enables CUDA code to be compiled down to x86 CPUs. This facilitates easier-than-ever deployment of CUDA-enabled applications across hybrid GPU/CPU systems and is an important milestone in the increased portability of CUDA. There are also several tools created by universities and 3rd-parties to convert CUDA source code to OpenCL source code, which can be compiled for any platform that supports OpenCL. So, portability is no longer a realistic objection but more of an excuse.

Training the millions of software developers who are already in the industry to program in parallel – that is the biggest challenge facing HPC and parallel computing in general. This is where the elegance of the CUDA parallel programming model really helps and the reason why it has caught on so quickly and so widely. CUDA C/C++ is an incredibly powerful language of authorship, and we have found that it is quite easy to learn.

HPCwire: Do you think the appearance of heterogeneous CPU-GPU processors portends the demise of discrete GPUs – for GPU computing or otherwise? Do you think it will spell the end of “pure” CPUs?

Kirk: A lot of folks believe that integrating CPUs and GPUs together is a panacea. As you well know, this is easy for NVIDIA to do. We have the highest volume integrated CPU-GPU SoC shipping today: our Tegra mobile SoC. But if you scale this to HPC, the challenge is that you have to compromise either on the performance of the CPU or that of the GPU. The silicon area is fixed, so you have to put a medium performance CPU with a medium performance GPU. Not exactly HPC! We find that none of our customers ever ask us for less performance.

For the foreseeable future, there will be a market for a discrete CPU and a discrete GPU – the performance users, whether in HPC or in gaming or CAD workstations, need the best of both. But a swing we already see happening is that applications are leaning more on the GPU for performance than on the CPU — both gaming and HPC. This is because performance scaling on CPUs seems to have reached an end. Laptops are not going beyond dual-core x86 CPUs. Even on HPC, application performance is not scaling beyond 4 cores. They end up choking on memory bandwidth.

Clearly, the personal computer experience is going to be dominated by SoCs with integrated ARM cores and GPUs. This is happening today and will be solidified by support for ARM in Windows Next. But as I said above, we expect that there will be a CPU + GPU market for a very long time to come.

HPCwire: How will users be able to port codes developed today with CUDA, OpenCL and accelerator-directives to the future shared-memory architectures of CPU-GPU integrated processors envisioned by “Project Denver” AMD Fusion, etc.?

Kirk: The beauty about the CUDA programming model is that it was designed for CPU-GPU based heterogeneous architectures. Whether the CPU and GPU are integrated does not change the programming model. Integration is simply a cost consideration. After all, we have been working on Tegra — ARM + GPU SoCs — for just as long as we have been working on CUDA. Other driver-level APIs like OpenCL treat the GPU as a device that is separate from the CPU (host) and this means that OpenCL as defined today has to be extended to support an integrated CPU-GPU device. This means that applications written with the CUDA toolkits will just work on our integrated CPU-GPU devices.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Finland’s CSC Chronicles the COVID Research Performed on Its ‘Puhti’ Supercomputer

May 11, 2021

CSC, Finland’s IT Center for Science, is home to a variety of computing resources, including the 1.7 petaflops Puhti supercomputer. The 682-node, Intel Cascade Lake-powered system, which places about halfway down the T Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x speedup in simulating molecules. Qiskit is IBM’s quantum soft Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base clock of 2.0GHz – implemented in HPE's single-socket ProLian Read more…

Supercomputer Research Tracks the Loss of the World’s Glaciers

May 7, 2021

British Columbia – which is over twice the size of California – contains around 17,000 glaciers that cover three percent of its landmass. These glaciers are crucial for the Canadian province, which relies on its many Read more…

AWS Solution Channel

FLYING WHALES runs CFD workloads 15 times faster on AWS

FLYING WHALES is a French startup that is developing a 60-ton payload cargo airship for the heavy lift and outsize cargo market. The project was born out of France’s ambition to provide efficient, environmentally friendly transportation for collecting wood in remote areas. Read more…

Meet Dell’s Pete Manca, an HPCwire Person to Watch in 2021

May 7, 2021

Pete Manca heads up Dell's newly formed HPC and AI leadership group. As senior vice president of the integrated solutions engineering team, he is focused on custom design, technology alliances, high-performance computing Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

LRZ Announces New Phase of SuperMUC-NG Supercomputer with Intel’s ‘Ponte Vecchio’ GPU

May 5, 2021

At the Leibniz Supercomputing Centre (LRZ) in München, Germany – one of the constituent centers of the Gauss Centre for Supercomputing (GCS) – the SuperMUC Read more…

Crystal Ball Gazing at Nvidia: R&D Chief Bill Dally Talks Targets and Approach

May 4, 2021

There’s no quibbling with Nvidia’s success. Entrenched atop the GPU market, Nvidia has ridden its own inventiveness and growing demand for accelerated computing to meet the needs of HPC and AI. Recently it embarked on an ambitious expansion by acquiring Mellanox (interconnect)... Read more…

Intel Invests $3.5 Billion in New Mexico Fab to Focus on Foveros Packaging Technology

May 3, 2021

Intel announced it is investing $3.5 billion in its Rio Rancho, New Mexico, facility to support its advanced 3D manufacturing and packaging technology, Foveros. Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire