GPU Challenges: A Q&A with NVIDIA’s David Kirk

By Nicole Hemsoth

June 22, 2011

At ISC this year, there are plenty of sessions devoted to manycore processors, especially in the role of HPC accelerators. Not surprisingly, a lot of these are centered on the current sweetheart of manycore: GPUs. One of the most well-attended sessions here at ISC’11 was “The GPU Debate” between NVIDIA Fellow David Kirk and LSU professor Thomas Sterling, where the two bantered about the architecture, its evolution as a general-purpose HPC processor, and its roadmap to exascale.

HPCwire caught up with Kirk and asked him about some of the specific challenges of GPU computing today and how he views the role of integrated CPU-GPU architectures as they come into play.

HPCwire: Is there any thought at NVIDIA to proposing CUDA as an open standard for the GPU/manycore computing community?

David Kirk: There are no plans to turn CUDA into an open standard at this point. Right now, the only processors we see being deployed widely in servers are x86 CPUs and NVIDIA GPUs and these are all supported by CUDA toolkits today. NVIDIA offers developers choice – choice to use CUDA C, CUDA C++, CUDA Fortran, OpenCL, or DirectCompute to program CPU-GPU systems. We chair the OpenCL working group, we have collaborated closely with Microsoft on DirectCompute and continue to do so as they evolve these platforms. But CUDA is our platform for innovation. We recently released CUDA 4.0, which is a huge leap forward in programmer productivity with features like unified virtual addressing and the new Thrust C++ template library. We continue to move CUDA forward at a rapid pace.

HPCwire: There has been plenty of talk about the problems involved in hanging a GPU processor off of a PCI bus for use as an external accelerator – I/O overhead and the software messiness of having to do explicit data transfers. What do you think are the biggest limitations of the current GPU processors from a hardware point of view, in regard to high performance computing?

Kirk: The PCIe bottleneck concern is hotly debated and we hear about it a lot. We are aware of very few applications that are bottlenecked by transfer speeds. Incidentally, the PCIe bus is often not the slowest bus in the system. Network and disk interfaces are slower, and in many systems the CPU memory path is slower!

That being said, there are two things that have changed since this concern first surfaced. First, we now have 6 GB of on-board memory and second, our new NVIDIA GPUDirect technology is eliminating the CPU and GPU memory bottlenecks from the path.

These enhancements reduce the PCIe bottleneck. Data can directly stream from storage to the GPU memory via GPUDirect and the larger GPU memory enables more data to reside on the GPU without communicating to the CPU. Our future GPU architectures will continue to reduce dependence on and communication with the CPU, thus eventually very significantly limiting the PCIe bottleneck. By the way, Vincent Natoli summarized it nicely in his recent HPCwire article.

I personally believe though, that the biggest limitation of GPU computing is the misconception that it’s too hard. Put this into whichever bucket you wish — ease of use of the software, the programmability of the hardware, the performance, per watt, per dollar. However you slice it, there have been many reasons cited as to why not to adopt GPU computing.

We’ll be the first to say that parallel computing is challenging. I personally co-teach the parallel computing course, along with Dr. Wen-mei Hwu, at the University of Illinois at Urbana-Champaign, so I know first-hand what it is like to switch the mindset from a purely serial based model to thinking about problems in a multi-threaded parallel environment.

But the rewards are significant. Change two percent of your code and in many cases you can see up to a 10X increase in performance. That’s a pretty big bang for your software development buck. And, we live in a parallel computing world now, so serial programming is no longer a viable option.

HPCwire: Same question for software side. What are the biggest limitations of the current GPU computing software frameworks?

Kirk: One of the most common concerns I hear from the community is the portability aspect of CUDA and the fact that it only runs on NVIDIA GPUs. As I said before, we remain agnostic on language. Fortran, Python, C, C++, Java, OpenCL, DirectCompute – we support all these languages, either internally or through 3rd parties. If you choose to use NVIDIA GPUs, then we will ensure that have you the widest choice of languages.

With regards to the portability of the hardware platform, PGI has just announced the first version of CUDA x86, that enables CUDA code to be compiled down to x86 CPUs. This facilitates easier-than-ever deployment of CUDA-enabled applications across hybrid GPU/CPU systems and is an important milestone in the increased portability of CUDA. There are also several tools created by universities and 3rd-parties to convert CUDA source code to OpenCL source code, which can be compiled for any platform that supports OpenCL. So, portability is no longer a realistic objection but more of an excuse.

Training the millions of software developers who are already in the industry to program in parallel – that is the biggest challenge facing HPC and parallel computing in general. This is where the elegance of the CUDA parallel programming model really helps and the reason why it has caught on so quickly and so widely. CUDA C/C++ is an incredibly powerful language of authorship, and we have found that it is quite easy to learn.

HPCwire: Do you think the appearance of heterogeneous CPU-GPU processors portends the demise of discrete GPUs – for GPU computing or otherwise? Do you think it will spell the end of “pure” CPUs?

Kirk: A lot of folks believe that integrating CPUs and GPUs together is a panacea. As you well know, this is easy for NVIDIA to do. We have the highest volume integrated CPU-GPU SoC shipping today: our Tegra mobile SoC. But if you scale this to HPC, the challenge is that you have to compromise either on the performance of the CPU or that of the GPU. The silicon area is fixed, so you have to put a medium performance CPU with a medium performance GPU. Not exactly HPC! We find that none of our customers ever ask us for less performance.

For the foreseeable future, there will be a market for a discrete CPU and a discrete GPU – the performance users, whether in HPC or in gaming or CAD workstations, need the best of both. But a swing we already see happening is that applications are leaning more on the GPU for performance than on the CPU — both gaming and HPC. This is because performance scaling on CPUs seems to have reached an end. Laptops are not going beyond dual-core x86 CPUs. Even on HPC, application performance is not scaling beyond 4 cores. They end up choking on memory bandwidth.

Clearly, the personal computer experience is going to be dominated by SoCs with integrated ARM cores and GPUs. This is happening today and will be solidified by support for ARM in Windows Next. But as I said above, we expect that there will be a CPU + GPU market for a very long time to come.

HPCwire: How will users be able to port codes developed today with CUDA, OpenCL and accelerator-directives to the future shared-memory architectures of CPU-GPU integrated processors envisioned by “Project Denver” AMD Fusion, etc.?

Kirk: The beauty about the CUDA programming model is that it was designed for CPU-GPU based heterogeneous architectures. Whether the CPU and GPU are integrated does not change the programming model. Integration is simply a cost consideration. After all, we have been working on Tegra — ARM + GPU SoCs — for just as long as we have been working on CUDA. Other driver-level APIs like OpenCL treat the GPU as a device that is separate from the CPU (host) and this means that OpenCL as defined today has to be extended to support an integrated CPU-GPU device. This means that applications written with the CUDA toolkits will just work on our integrated CPU-GPU devices.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Researchers Train Fluid Dynamics Neural Networks on Supercomputers

January 21, 2021

Fluid dynamics simulations are critical for applications ranging from wind turbine design to aircraft optimization. Running these simulations through direct numerical simulations, however, is computationally costly. Many Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This