Practicalities and Challenges in the Petaflops Era

By Thomas Sterling and Chirag Dekate

June 22, 2011

Every year at ISC we stop and look back at the field of HPC, which has consistently exhibited the greatest rate of change of any technology in the history of mankind. This year is particularly important as the conventional methods that have served well over the last two decades are in direct contention with the technology trends pushing us towards a new future. This is best highlighted in the context of petaflops-capable supercomputers that have become the new standard at the top end of HPC and the reemergence of Asia as a dominant player in that ethereal regime.

But what has defined this year and distinguished it from the recent past is that although the issues are clear, the future conclusions are not. Perhaps, that is the lesson: that we are in a rare state of transition the outcome of which is yet to be determined. And the debate is anything but over. Let’s consider the highlights.

Petaflop computing is now the norm worldwide with the US, Europe, and Asia all driving computation beyond 10^15 flops. Most notable was China with its deployment of Tianhe-1A exceeding 2.5 petaflops (Linpack), assuming the position of the “fastest computer in the world” in 2010. That system is now surpassed with the 8 petaflops K Computer from Japan, giving that country the top spot for the first time since the illustrious Earth-Simulator.

Asia also has significant deployment of more traditional HPC systems, providing the means for strong programs in computational science with potential long-term impact on future science and engineering disciplines. Finally, an increasing share of the integrated components in Asia is homegrown, indicating a likely future with fully native HPC systems.

This year the big debate is the future of HPC system architecture: homogeneous multicore/manycore or heterogeneous GPU-based structures. And in both cases, the issue of programming dominates. GPUs are perceived by many as the fast track to superior computing. And for some applications this has been demonstrated. Indeed, of the top four machines, three incorporate GPUs. That would suggest a clear trend. But not so fast. Of the top 500 systems, only 17 integrate GPUs as a seminal element in achieving their performance goals. That would also suggest a clear trend, but in the opposite direction.

GPUs bring an enormous combined floating-point capability in a relatively small package and at a superior power/performance envelope. The numbers are staggering, but at a cost. Sitting at the wrong end of a PCI bus, the long latencies and relatively low bandwidth demands very high data reuse and highly regular control flow to extract anything near their peak potential. And with program control residing with the general-purpose processors, the programming methods for such hybrid systems is not for the faint of heart or consistent with the mass of legacy codes upon which industry, science, and governments all rely upon and have invested in.

Thus, it is possible that such architectures as TSUBAME 2.0 are transitional in that they represent the beginnings of an empirical search that in a few years will resolve in a distinctly different system architecture, exploiting the best of both manycore and GPUs but in a balanced and well-integrated structure managed by a unified programming methodology. While many practitioners experiment, sometimes to good effect, with CUDA and the emerging OpenCL framework, many more codes and programmers remain wedded to more day-to-day productive means.

These are very exciting times but those who think they know the final answer are probably fooling themselves, if not the rest of us. After all, the new number one K supercomputer is not based on GPUs but is 3 times faster than the number two Tianhe-1A machine, which is.

The steady increase in delivered performance is also pushing the power envelope. One advantage of GPUs, when employed effectively, is a somewhat improved energy efficiency (joules/operations). But while clock rates remain relatively stable (although differing across a range of approximately 3X) the scale of the largest systems continues to grow as HPC approaches another milestone: a million cores. The tradeoff is complex, but grave concerns are warranted as the biggest machines top 10 megawatts.

This is the driving and principal constraint for ambitious projects to deliver sustained exaflops performance before the end of this decade. The International Exascale Software Project has a worldwide representation coordinating the development of a new software platform that will support exascale systems in their management and application in the next decade. Recognizing the long lead times for software and their corresponding almost prohibitive costs, the opportunity to combine investment of resources in mutually aligned directions would appear to be an essential strategy to achieve billion-way parallelism.

In the US, the DARPA sponsored UHPC program, while not expressly targeting exascale systems has initiated this year to develop suitable technologies for a petaflop in a rack at under 60 kilowatts. The European Exascale Software Initiative is to develop a roadmap to exaflops, and also in Europe, both Intel and separately, Cray, are engaged in collaborations with European researchers to drive towards exaflops. In Asia, both Japan and China have programs intended to move aggressively towards sustained exaflops for real world applications, perhaps as early as 2018. But with predictions of hundreds of megawatts required through extensions of conventional methods, what such systems will look like is far from certain, let alone how they will be programmed.

Driving the field of HPC towards new capabilities is the underlying technologies and the processor designs from which they are constructed. Intel, IBM, and AMD are all advancing their processor designs. 45 and 32 nanometer technologies are taking hold even as the number of cores per die and socket is increasing to deliver continuing increase in performance.

Intel’s Xeon E7-8870 Processor integrates 10 cores, operating at 2.7 GHz, with 30MB cache size and supporting 2 terabytes of DDR3 memory. Using Hafnium-based high-k metal gate silicon technology, the Intel chip burns 130 Watts.

Cooler is the 12-core 2.5 GHz AMD Opteron 6100 component at 45 nanometers. It draws 105 Watts and is based on their full-field EUV lithography technology. AMD plans on going to 16 cores by Q3 of this year based on 32 nanometers, while Intel is preparing their 22 nanometer Ivy-bridge processors based on 3-D TriGate transistors.

IBM’s heavy hitter continues to be the Power family with the 45 nanometer Power7 out last year, supporting a number of chip configurations between 4 and 8 cores. This will serve as the central component to the 10 petaflops Blue Waters machine to be deployed next year. Its successor, IBM Power8, is currently under development.

GPU designs continue to push the edge of the envelope in peak performance while enhancing their generality for greater utility. The NVIDIA Tesla 20-series family based on the Fermi architecture can integrate up to 512 CUDA cores with clock rates of between 1.15 and 1.4 GHz and deliver more than a half a teraflop of double precision performance. With comparable performance is the AMD FireStream 9370 series GPU based on the Cypress architecture. Both vendors are moving towards tighter system integration with AMD’s pushing its Fusion system architecture. In the software domain, it’s a head-to-head fight between CUDA and OpenCL, with strong advocates for each.

The underlying technologies are certainly not standing still. Recent graphene technology breakthroughs include UCLA reporting 300 GHz switching rates and UC Berkeley announcing new optical modulators, while IBM has implemented the first integrated circuit based on graphene transistors. 3-D stacking of dies by IBM, Xilinx, and other manufacturers is preparing HPC for higher density packaging with higher internal bandwidths and shorter latencies, while combining disparate functional components (e.g., cores, DRAM) into single integrated units.

Every year an attempt is made to capture a more meaningful representation of supercomputing based on the TOP500. The list provides extensive data but usually only discussed in terms of the highest rated machine, the lowest rated machine, and the sum of all 500 machines. But what about supercomputing for the common man; the mainstream form and capability. This year, although the top machines exhibit unique properties, the canonical system is the standard Linux commodity cluster with a peak performance of 72.4 Teraflops and a Linpack rating of 38.3 teraflops. Such a system incorporates Intel Xeon Nehalem-EP processors, integrated by IBM (HP is a close second), and interconnected with Gigabit Ethernet (InfiniBand has almost caught up). The system comprises 1,134 sockets of 6 cores each and burns 200 Kilowatts. The closest machine to this profile is number 288 on the TOP500 list.

Even though we still rate systems in teraflops, the Graph 500 list is emerging to represent a very different class of computing: data intensive processing, a domain in which the manipulation of the metadata dominates in lieu of floating point operations. Although yet to dominate, this emerging class of computing is important for many sparse problems as well as knowledge management and understanding problems that are expected to have increasing impact on the field of HPC.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This