Practicalities and Challenges in the Petaflops Era

By Thomas Sterling and Chirag Dekate

June 22, 2011

Every year at ISC we stop and look back at the field of HPC, which has consistently exhibited the greatest rate of change of any technology in the history of mankind. This year is particularly important as the conventional methods that have served well over the last two decades are in direct contention with the technology trends pushing us towards a new future. This is best highlighted in the context of petaflops-capable supercomputers that have become the new standard at the top end of HPC and the reemergence of Asia as a dominant player in that ethereal regime.

But what has defined this year and distinguished it from the recent past is that although the issues are clear, the future conclusions are not. Perhaps, that is the lesson: that we are in a rare state of transition the outcome of which is yet to be determined. And the debate is anything but over. Let’s consider the highlights.

Petaflop computing is now the norm worldwide with the US, Europe, and Asia all driving computation beyond 10^15 flops. Most notable was China with its deployment of Tianhe-1A exceeding 2.5 petaflops (Linpack), assuming the position of the “fastest computer in the world” in 2010. That system is now surpassed with the 8 petaflops K Computer from Japan, giving that country the top spot for the first time since the illustrious Earth-Simulator.

Asia also has significant deployment of more traditional HPC systems, providing the means for strong programs in computational science with potential long-term impact on future science and engineering disciplines. Finally, an increasing share of the integrated components in Asia is homegrown, indicating a likely future with fully native HPC systems.

This year the big debate is the future of HPC system architecture: homogeneous multicore/manycore or heterogeneous GPU-based structures. And in both cases, the issue of programming dominates. GPUs are perceived by many as the fast track to superior computing. And for some applications this has been demonstrated. Indeed, of the top four machines, three incorporate GPUs. That would suggest a clear trend. But not so fast. Of the top 500 systems, only 17 integrate GPUs as a seminal element in achieving their performance goals. That would also suggest a clear trend, but in the opposite direction.

GPUs bring an enormous combined floating-point capability in a relatively small package and at a superior power/performance envelope. The numbers are staggering, but at a cost. Sitting at the wrong end of a PCI bus, the long latencies and relatively low bandwidth demands very high data reuse and highly regular control flow to extract anything near their peak potential. And with program control residing with the general-purpose processors, the programming methods for such hybrid systems is not for the faint of heart or consistent with the mass of legacy codes upon which industry, science, and governments all rely upon and have invested in.

Thus, it is possible that such architectures as TSUBAME 2.0 are transitional in that they represent the beginnings of an empirical search that in a few years will resolve in a distinctly different system architecture, exploiting the best of both manycore and GPUs but in a balanced and well-integrated structure managed by a unified programming methodology. While many practitioners experiment, sometimes to good effect, with CUDA and the emerging OpenCL framework, many more codes and programmers remain wedded to more day-to-day productive means.

These are very exciting times but those who think they know the final answer are probably fooling themselves, if not the rest of us. After all, the new number one K supercomputer is not based on GPUs but is 3 times faster than the number two Tianhe-1A machine, which is.

The steady increase in delivered performance is also pushing the power envelope. One advantage of GPUs, when employed effectively, is a somewhat improved energy efficiency (joules/operations). But while clock rates remain relatively stable (although differing across a range of approximately 3X) the scale of the largest systems continues to grow as HPC approaches another milestone: a million cores. The tradeoff is complex, but grave concerns are warranted as the biggest machines top 10 megawatts.

This is the driving and principal constraint for ambitious projects to deliver sustained exaflops performance before the end of this decade. The International Exascale Software Project has a worldwide representation coordinating the development of a new software platform that will support exascale systems in their management and application in the next decade. Recognizing the long lead times for software and their corresponding almost prohibitive costs, the opportunity to combine investment of resources in mutually aligned directions would appear to be an essential strategy to achieve billion-way parallelism.

In the US, the DARPA sponsored UHPC program, while not expressly targeting exascale systems has initiated this year to develop suitable technologies for a petaflop in a rack at under 60 kilowatts. The European Exascale Software Initiative is to develop a roadmap to exaflops, and also in Europe, both Intel and separately, Cray, are engaged in collaborations with European researchers to drive towards exaflops. In Asia, both Japan and China have programs intended to move aggressively towards sustained exaflops for real world applications, perhaps as early as 2018. But with predictions of hundreds of megawatts required through extensions of conventional methods, what such systems will look like is far from certain, let alone how they will be programmed.

Driving the field of HPC towards new capabilities is the underlying technologies and the processor designs from which they are constructed. Intel, IBM, and AMD are all advancing their processor designs. 45 and 32 nanometer technologies are taking hold even as the number of cores per die and socket is increasing to deliver continuing increase in performance.

Intel’s Xeon E7-8870 Processor integrates 10 cores, operating at 2.7 GHz, with 30MB cache size and supporting 2 terabytes of DDR3 memory. Using Hafnium-based high-k metal gate silicon technology, the Intel chip burns 130 Watts.

Cooler is the 12-core 2.5 GHz AMD Opteron 6100 component at 45 nanometers. It draws 105 Watts and is based on their full-field EUV lithography technology. AMD plans on going to 16 cores by Q3 of this year based on 32 nanometers, while Intel is preparing their 22 nanometer Ivy-bridge processors based on 3-D TriGate transistors.

IBM’s heavy hitter continues to be the Power family with the 45 nanometer Power7 out last year, supporting a number of chip configurations between 4 and 8 cores. This will serve as the central component to the 10 petaflops Blue Waters machine to be deployed next year. Its successor, IBM Power8, is currently under development.

GPU designs continue to push the edge of the envelope in peak performance while enhancing their generality for greater utility. The NVIDIA Tesla 20-series family based on the Fermi architecture can integrate up to 512 CUDA cores with clock rates of between 1.15 and 1.4 GHz and deliver more than a half a teraflop of double precision performance. With comparable performance is the AMD FireStream 9370 series GPU based on the Cypress architecture. Both vendors are moving towards tighter system integration with AMD’s pushing its Fusion system architecture. In the software domain, it’s a head-to-head fight between CUDA and OpenCL, with strong advocates for each.

The underlying technologies are certainly not standing still. Recent graphene technology breakthroughs include UCLA reporting 300 GHz switching rates and UC Berkeley announcing new optical modulators, while IBM has implemented the first integrated circuit based on graphene transistors. 3-D stacking of dies by IBM, Xilinx, and other manufacturers is preparing HPC for higher density packaging with higher internal bandwidths and shorter latencies, while combining disparate functional components (e.g., cores, DRAM) into single integrated units.

Every year an attempt is made to capture a more meaningful representation of supercomputing based on the TOP500. The list provides extensive data but usually only discussed in terms of the highest rated machine, the lowest rated machine, and the sum of all 500 machines. But what about supercomputing for the common man; the mainstream form and capability. This year, although the top machines exhibit unique properties, the canonical system is the standard Linux commodity cluster with a peak performance of 72.4 Teraflops and a Linpack rating of 38.3 teraflops. Such a system incorporates Intel Xeon Nehalem-EP processors, integrated by IBM (HP is a close second), and interconnected with Gigabit Ethernet (InfiniBand has almost caught up). The system comprises 1,134 sockets of 6 cores each and burns 200 Kilowatts. The closest machine to this profile is number 288 on the TOP500 list.

Even though we still rate systems in teraflops, the Graph 500 list is emerging to represent a very different class of computing: data intensive processing, a domain in which the manipulation of the metadata dominates in lieu of floating point operations. Although yet to dominate, this emerging class of computing is important for many sparse problems as well as knowledge management and understanding problems that are expected to have increasing impact on the field of HPC.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Launches Site to Share its NYC-based Algorithm Research

August 22, 2017

Much of Google’s algorithm development occurs in groups scattered throughout New York City. Yesterday, Google launched a single website - NYC Algorithms and Optimization Team page - to provide a deeper view into all of Read more…

By John Russell

Dell Strikes Reseller Deal with Atos; Supplants SGI

August 22, 2017

Dell EMC and Atos announced a reseller deal today in which Dell will offer Atos’ high-end 8- and 16-socket Bullion servers. Some move from Dell had been expected following Hewlett Packard Enterprise’s purchase of SGI Read more…

By John Russell

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This