Thoughts on Memory Trends from Micron’s Dean Klein

By Michael Feldman

June 23, 2011

With all the focus on more powerful microprocessors, sometimes it’s easy to forget that speedier chips do no good if memory or storage is your bottleneck. Since processors are increasing their performance at a much faster rate then bandwidth, there has been a renewed focus on technologies to help to close that gap between processors and memory as well as between memory and storage. Advanced DRAM, NAND flash, and other more exotic memories are being developed with just that challenge mind.

In the final keynote of the week at the International Supercomputing Conference, Dean Klein addressed this topic in some depth under the session titled: Trends in Memory Systems: Showstopper or Performance Potential for HPC. Klein is the VP of Memory Systems Development at Micron Technology and has been immersed in this area since joining the company in 1999. Prior to the conference, HPCwire asked Klein to preview the topic and give us his take on where he thinks memory technology is heading, especially for high performance computing systems.

HPCwire: What are the big drivers today for memory technology?

Dean Klein: Process, economics and architecture. Process technology has always been a driver, and it remains so today. Memory processes have always led the advanced lithography charge for the semiconductor industry, as well. Economics have been a significant driver, as well. The economics of shrinking have allowed us to pack over 64 gigabits of NAND on a single die today using 20nm processes.

For DRAM, the economics of government subsidies and expensive process R&D have created an industry of booms and busts. This cyclical market has shown recent signs of stabilization which will allow the industry to tackle the challenge of architecture. Memory has always been on a path of incremental evolution, with minor architectural improvements, which unfortunately have not kept pace with processors. Today, architecture is driving memory towards dramatically higher performance with aggressive power savings.

HPCwire: What sort of memory technologies do you think will become more important in the coming years, especially in regard to high performance computing and servers in general?

Klein: My biases here probably show in the previous answer! Memory technologies that allow greater performance, reliability and power savings are clearly going to play big roles in HPC this decade. We have shown our Hybrid Memory Cube (HMC) concept, which is clearly an example of the type of DRAM technology that can revolutionize HPC.

But we can’t forget the other side of memory, either — the non-volatile side. Non-volatile memory (NVM) will play a major role in HPC and servers. The impact in servers is already being felt in systems employing SSD’s as part of the storage hierarchy. But we’re only touching the tip of the iceberg so far!

HPCwire: What role will 3D memory technologies play?

Klein: Shrinking in the X and Y dimensions will grow to be a greater challenge throughout this decade. There are multiple places where 3D memory technologies will play big roles. At the process level, 3D is already huge, with the DRAM cells themselves being highly engineered 3D structures. Transistors and capacitors both are highly 3D. At the die level, stacking of DRAM die is already occurring to meet density requirements. With DDR4 this will become even more common. Of course, the Hybrid Memory Cube takes die stacking to a whole new level, utilizing thru-silicon vias to build a much more efficient stack.

HPCwire: How will these new technologies affect processor and server architectures?

Klein: This is an area where a lot of innovation is set to occur and I can only dream of the impact of these technologies. Certainly, there is a probability of an expansion of the memory hierarchy as extreme bandwidth, coupled with dramatic power savings, from technologies like HMC and NVM are adopted into HPC. But this is only the start. There are a lot of factors influencing HPC architecture today that will also play a role. Other processor architectures, such as Power, ARM and GPUs can integrate new memory technologies in some pretty exciting ways.

HPCwire: What’s the next step for SSDs?

Klein: The next major step for SSD’s is to leave the legacy storage connections behind. PCIe is the next obvious connection as is highlighted by products from Fusion-IO, Micron, and others. Of course, NAND is today’s current choice for SSD’s but Micron has demonstrated phase change memory (PCM) in the PCIe environment as well.

HPCwire: How would you rate the potential of the more exotic solid state technologies like phase change memory, spin-torque transfer memories (STTM) or others, compared to conventional NAND?

Klein: NAND is real, and it is very inexpensive. Some companies have shown that NAND can continue to scale if the cells are constructed in a 3D manner. As long as NAND continues to scale, the economics will continue to be in its favor. However, memory technologies like PCM or STTM have other advantages, including an ability to read and write single words. This alone gives them an architectural advantage over NAND in non-storage applications.

HPCwire: What will be the role of HDDs when SSDs become a ubiquitous element in all computing systems?

Klein: HDDs are NOT going away! Globally we are creating data at a tremendous rate and we will still need rotating media to store much of it. But this rotating media will be focused more on density and less on performance.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This