Blue Gene Sniffs for Black Gold in the Cloud

By Manish Parashar

June 27, 2011

SCALE 2011 Winner Supercomputing as-a-Service using CometCloud

A multi-institutional team consisting of The Center for Autonomic Computing (Rutgers University), IBM T.J. Watson Research Center and Center for Subsurface Modeling (The University of Texas at Austin) was awarded the first place in the IEEE SCALE 2011 Challenge for their demonstration titled “A Scalable Ensemble-based Oil-Reservoir Simulations using Blue Gene/P-as-a-Service”. The demonstration provides supercomputing as-a-service by connecting two IBM Blue Gene/P systems in two different continents to form a large HPC Cloud using the CometCloud framework.

Emerging cloud services represent a new paradigm for computing based on an easy-to-use as-a-service abstraction, on-demand access to computing utilities, on-demand scale-up/down/out, and a usage-based payment model where users essentially “rent” virtual resources and pay for what they use. Underlying these cloud services are consolidated and virtualized data centers that provide virtual machine (VM) containers hosting applications from large numbers of distributed users. The cloud paradigm has the potential for significantly impacting price/performance behaviors and trade-offs for a wide range of applications and IT services, and as a result, there has been a proliferation of a wide range of cloud offerings spanning different levels including infrastructure-as-a-service, platform-as-a-service, software-as-a-service and applications-as-a-service.

However, existing cloud services have been largely ineffective for many HPC applications, which are becoming increasingly important in understanding the complex processes for many domains including Aerospace, Automobile, Entertainment, Finance, Manufacturing, Oil & Gas, Pharmaceuticals, etc. Reasons for this include the limited capabilities and power of the typical underlying hardware and its non-homogeneity, the lack of high-speed interconnects to support data exchanges required by many HPC applications, as well as the physical distance between machines.

While the requirements of this class of HPC application are well served by high-end supercomputing systems that provide the necessary scales and compute/communication capabilities, these systems required relatively low-level user involvement and expert knowledge, and as a result, only a few “hero” users are able to effectively use these cutting edge systems. Furthermore, these high-end resources do not typically support elasticity and dynamic scalability. Clearly, HPC applications running on these supercomputing systems could significantly benefit from the cloud abstraction, in particular from the perspectives of ease-of-use, on-demand access, elasticity and dynamic allocation of resources, as well as the integration of multiple high-end systems.

CometCloud: Federated Multi-Clouds On-Demand!

CometCloud (www.cometcloud.org) is an autonomic cloud-computing engine that enables the dynamic and on-demand federation of heterogeneous clouds, the extension of the cloud abstraction to HPC-grids and clusters, and the deployment and execution of applications on dynamically federated multi-clouds (i.e., hybrid infrastructure integrating (public & private) clouds, data-centers and enterprise Grids). A schematic overview of the CometCloud architecture is presented in Figure 1.

CometCloud provides (1) infrastructure services for synthesizing robust and secure virtual clouds through dynamic federation and coordination to enable on-demand scale-up, scale-down and scale-out, (2) programming support for enabling cloud deployments of application using popular programming models (e.g., MapReduce, Master/Worker) and application workflows, and (3) services for autonomic monitoring and management of infrastructure and applications. CometCloud is currently being used for cloud deployments of science, engineering and business application workflows.

Scalable Ensemble-based Oil-Reservoir Simulations using Blue Gene/P as-a-Service – Winner of the IEEE International SCALE 2011 Challenge

It is clear that the cloud model can alleviate some of the problems of HPC applications described above. The overarching goal of our IEEE SCALE 2011 demonstration was to illustrate this by showing how a cloud abstraction can be effectively used to provide a simple interface for current HPC resources and support real-world HPC applications. Specifically, we used CometCloud to essentially transform Blue Gene/P supercomputer systems into a federated elastic cloud, supporting dynamic provisioning and efficient utilization while maximizing ease-of-use through an as-a-service abstraction.

The overall configuration of the federated HPC-cloud used in the IEEE SCALE 2011 demonstration is illustrated in Figure 2. In this figure CometCloud was responsible for orchestrating the execution of the overall workflow. Note that the application components were used as-is without having to modify them. Deep Cloud, a reservation based system developed by IBM T.J. Watson Research Center, was responsible for the physical allocation of resources required to execute these tasks. The Blue Gene agent monitored the size of the tasks in the CometCloud task pool and communicated with Deep Cloud to obtain information about the current available resources. Using this information, the agent requested the appropriate allocation of Blue Gene/P resources and integrated them into the federated multi-cloud. Note that resources, which are no longer required, are deallocated.

The demonstration used a real-world ensemble application. Ensemble applications represent a significant class of HPC applications that require effective utilization of high-end Petascale and eventually Exascale systems. These applications explore large parameter spaces in order to simulate multi-scale and multiphase models and minimize uncertainty. Running ensemble applications require a large and dynamic pool of HPC resources and fast interconnects between the processing nodes.

The overall application scenario used in the demonstration is presented in Figure 3. The workflow consisted of multiple stages, each stage consisting of multiple, simultaneously running instances of IPARS (Implicit Parallel Accurate Reservoir Simulator), a black box, compute intensive oil-reservoir history matching application. The results of each stage were filtered through an Ensemble Kalman Filter (EnKF). Each IPARS instance (or ensemble member) required a varying number of processors and fast communication among these processors. Furthermore, the number of stages and number of ensemble members per stage were dynamic and depended on the specific problem and the desired level of accuracy. CometCloud was responsible for orchestrating the execution of the overall workflow, i.e. running the IPARS instances and integrating their results with the EnKF. Once the set of ensemble members associated with a stage have completed execution, the CometCloud workflow engine ran the EnKF step to process the results produced by these instances and generate the set of ensemble members for the next stage. The Blue Gene agent then dynamically adjusted resources (scaled up, down or out) to accommodate the new set of ensemble members. The entire process was repeated until the application objectives, i.e., the desired level of accuracy was achieved, and then all resources were released and final results returned to the user.


 
Figure 3: Application scenario demonstrated at IEEE SCALE 2011

The demonstration at the IEEE SCALE 2011 started by running a workflow stage with 10 initial ensemble members, where each ensemble member required between 32-128 processors. To run this, 5 partitions (32 nodes each, a total of 640 processors total) were provisioned on the IBM Blue Gene/P at Yorktown Heights, NY. The user then requested a faster time to completion, which resulted in an increase in the number of partitions provisioned to 10 (32 nodes each, a total of 1,280 processors total). This phase of the demonstration illustrated the ease of use as well as dynamic scale-up enabled using CometCloud.

In the next phase of the demonstration, the application increased the desired level of accuracy, which resulted in an increase in the number of ensemble members to 150. Maintaining the desired time to completion required a dynamic scale up in the number of resources, and the number of partitions that need to be provisioned was greater than those available at the IBM Blue Gene/P at Yorktown heights, NY (i.e., 128 partitions, 32 nodes each for a total of 16,384 processors). This resulted in CometCloud scaling out, and dynamically federating the Blue Gene/P at KAUST in Saudi Arabia. It then provisioned 22 partitions, (64 nodes each, 5,632 processors total) on this system. The ensemble members were dynamically scheduled on the federated multi-cloud composed of the two geographically distributed HPC systems, an aggregate 22,016 processors.

The project team consisted of Manish Parashar, Moustafa AbdelBaky, and Hyunjoo Kim (CAC, Rutgers Univ.), Kirk Jordan, Hani Jamjoom, Vipin Sachdeva, Zon-Yin Shae and James Sexton (IBM T.J. Watson Research Center), and Gergina Pencheva, Reza Tavakoli, and Mary F. Wheeler (CSM, UT Austin).

Team

Moustafa AbdelBaky is a Ph.D. Student at Rutgers University. Hyunjoo Kim is a Postdoctoral Associate at Rutgers University. Manish Parashar is a Professor at Rutgers University. Kirk E. Jordan is the Emerging Solutions Executive and Associate Program Director in the Computational Science Center at IBM T.J. Watson Research Center. Hani Jamjoom is a Research Manager at IBM T.J. Watson Research Center. Vipin Sachdeva is a Researcher in the Computation Science Center at IBM T.J. Watson Research Center. Zon-Yin Shae is a Researcher at IBM T.J. Watson Research Center. James Sexton is Program Director in the Computational Science Center at IBM T.J. Watson Research Center. Gergina Pencheva is a Research Associate at the Center for Subsurface Modeling at The University of Texas at Austin. Reza Tavakoli is a Postdoctoral Fellow at the Center for Subsurface Modeling at The University of Texas at Austin. Mary F. Wheeler is Ernest and Virginia Cockrell Chair in Engineering at The University of Texas at Austin.

More information can be found at http://nsfcac.rutgers.edu/icode/scale

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

What We Know about Alice Recoque, Europe’s Second Exascale System

June 24, 2024

Europe officially announced its second exascale system, Alice Recoque, and you can expect to see that name on the Top500 supercomputer list in a few years. Alice Recoque is the new name for a supercomputer with the opera Read more…

Spelunking the HPC and AI GPU Software Stacks

June 21, 2024

As AI continues to reach into every domain of life, the question remains as to what kind of software these tools will run on. The choice in software stacks – or collections of software components that work together to Read more…

HPE and NVIDIA Join Forces and Plan Conquest of Enterprise AI Frontier

June 20, 2024

The HPE Discover 2024 conference is currently in full swing, and the keynote address from Hewlett-Packard Enterprise (HPE) CEO Antonio Neri on Tuesday, June 18, was an unforgettable event. Other than being the first busi Read more…

Slide Shows Samsung May be Developing a RISC-V CPU for In-memory AI Chip

June 19, 2024

Samsung may have unintentionally revealed its intent to develop a RISC-V CPU, which a presentation slide showed may be used in an AI chip. The company plans to release an AI accelerator with heavy in-memory processing, b Read more…

ASC24 Student Cluster Competition: Who Won and Why?

June 18, 2024

As is our tradition, we’re going to take a detailed look back at the recently concluded the ASC24 Student Cluster Competition (Asia Supercomputer Community) to see not only who won the various awards, but to figure out Read more…

Qubits 2024: D-Wave’s Steady March to Quantum Success

June 18, 2024

In his opening keynote at D-Wave’s annual Qubits 2024 user meeting, being held in Boston, yesterday and today, CEO Alan Baratz again made the compelling pitch that D-Wave’s brand of analog quantum computing (quantum Read more…

Spelunking the HPC and AI GPU Software Stacks

June 21, 2024

As AI continues to reach into every domain of life, the question remains as to what kind of software these tools will run on. The choice in software stacks – Read more…

HPE and NVIDIA Join Forces and Plan Conquest of Enterprise AI Frontier

June 20, 2024

The HPE Discover 2024 conference is currently in full swing, and the keynote address from Hewlett-Packard Enterprise (HPE) CEO Antonio Neri on Tuesday, June 18, Read more…

Slide Shows Samsung May be Developing a RISC-V CPU for In-memory AI Chip

June 19, 2024

Samsung may have unintentionally revealed its intent to develop a RISC-V CPU, which a presentation slide showed may be used in an AI chip. The company plans to Read more…

Qubits 2024: D-Wave’s Steady March to Quantum Success

June 18, 2024

In his opening keynote at D-Wave’s annual Qubits 2024 user meeting, being held in Boston, yesterday and today, CEO Alan Baratz again made the compelling pitch Read more…

Shutterstock_666139696

Argonne’s Rick Stevens on Energy, AI, and a New Kind of Science

June 17, 2024

The world is currently experiencing two of the largest societal upheavals since the beginning of the Industrial Revolution. One is the rapid improvement and imp Read more…

Under The Wire: Nearly HPC News (June 13, 2024)

June 13, 2024

As managing editor of the major global HPC news source, the term "news fire hose" is often mentioned. The analogy is quite correct. In any given week, there are Read more…

Labs Keep Supercomputers Alive for Ten Years as Vendors Pull Support Early

June 12, 2024

Laboratories are running supercomputers for much longer, beyond the typical lifespan, as vendors prematurely deprecate the hardware and stop providing support. Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire