Blue Gene Sniffs for Black Gold in the Cloud

By Manish Parashar

June 27, 2011

SCALE 2011 Winner Supercomputing as-a-Service using CometCloud

A multi-institutional team consisting of The Center for Autonomic Computing (Rutgers University), IBM T.J. Watson Research Center and Center for Subsurface Modeling (The University of Texas at Austin) was awarded the first place in the IEEE SCALE 2011 Challenge for their demonstration titled “A Scalable Ensemble-based Oil-Reservoir Simulations using Blue Gene/P-as-a-Service”. The demonstration provides supercomputing as-a-service by connecting two IBM Blue Gene/P systems in two different continents to form a large HPC Cloud using the CometCloud framework.

Emerging cloud services represent a new paradigm for computing based on an easy-to-use as-a-service abstraction, on-demand access to computing utilities, on-demand scale-up/down/out, and a usage-based payment model where users essentially “rent” virtual resources and pay for what they use. Underlying these cloud services are consolidated and virtualized data centers that provide virtual machine (VM) containers hosting applications from large numbers of distributed users. The cloud paradigm has the potential for significantly impacting price/performance behaviors and trade-offs for a wide range of applications and IT services, and as a result, there has been a proliferation of a wide range of cloud offerings spanning different levels including infrastructure-as-a-service, platform-as-a-service, software-as-a-service and applications-as-a-service.

However, existing cloud services have been largely ineffective for many HPC applications, which are becoming increasingly important in understanding the complex processes for many domains including Aerospace, Automobile, Entertainment, Finance, Manufacturing, Oil & Gas, Pharmaceuticals, etc. Reasons for this include the limited capabilities and power of the typical underlying hardware and its non-homogeneity, the lack of high-speed interconnects to support data exchanges required by many HPC applications, as well as the physical distance between machines.

While the requirements of this class of HPC application are well served by high-end supercomputing systems that provide the necessary scales and compute/communication capabilities, these systems required relatively low-level user involvement and expert knowledge, and as a result, only a few “hero” users are able to effectively use these cutting edge systems. Furthermore, these high-end resources do not typically support elasticity and dynamic scalability. Clearly, HPC applications running on these supercomputing systems could significantly benefit from the cloud abstraction, in particular from the perspectives of ease-of-use, on-demand access, elasticity and dynamic allocation of resources, as well as the integration of multiple high-end systems.

CometCloud: Federated Multi-Clouds On-Demand!

CometCloud (www.cometcloud.org) is an autonomic cloud-computing engine that enables the dynamic and on-demand federation of heterogeneous clouds, the extension of the cloud abstraction to HPC-grids and clusters, and the deployment and execution of applications on dynamically federated multi-clouds (i.e., hybrid infrastructure integrating (public & private) clouds, data-centers and enterprise Grids). A schematic overview of the CometCloud architecture is presented in Figure 1.

CometCloud provides (1) infrastructure services for synthesizing robust and secure virtual clouds through dynamic federation and coordination to enable on-demand scale-up, scale-down and scale-out, (2) programming support for enabling cloud deployments of application using popular programming models (e.g., MapReduce, Master/Worker) and application workflows, and (3) services for autonomic monitoring and management of infrastructure and applications. CometCloud is currently being used for cloud deployments of science, engineering and business application workflows.

Scalable Ensemble-based Oil-Reservoir Simulations using Blue Gene/P as-a-Service – Winner of the IEEE International SCALE 2011 Challenge

It is clear that the cloud model can alleviate some of the problems of HPC applications described above. The overarching goal of our IEEE SCALE 2011 demonstration was to illustrate this by showing how a cloud abstraction can be effectively used to provide a simple interface for current HPC resources and support real-world HPC applications. Specifically, we used CometCloud to essentially transform Blue Gene/P supercomputer systems into a federated elastic cloud, supporting dynamic provisioning and efficient utilization while maximizing ease-of-use through an as-a-service abstraction.

The overall configuration of the federated HPC-cloud used in the IEEE SCALE 2011 demonstration is illustrated in Figure 2. In this figure CometCloud was responsible for orchestrating the execution of the overall workflow. Note that the application components were used as-is without having to modify them. Deep Cloud, a reservation based system developed by IBM T.J. Watson Research Center, was responsible for the physical allocation of resources required to execute these tasks. The Blue Gene agent monitored the size of the tasks in the CometCloud task pool and communicated with Deep Cloud to obtain information about the current available resources. Using this information, the agent requested the appropriate allocation of Blue Gene/P resources and integrated them into the federated multi-cloud. Note that resources, which are no longer required, are deallocated.

The demonstration used a real-world ensemble application. Ensemble applications represent a significant class of HPC applications that require effective utilization of high-end Petascale and eventually Exascale systems. These applications explore large parameter spaces in order to simulate multi-scale and multiphase models and minimize uncertainty. Running ensemble applications require a large and dynamic pool of HPC resources and fast interconnects between the processing nodes.

The overall application scenario used in the demonstration is presented in Figure 3. The workflow consisted of multiple stages, each stage consisting of multiple, simultaneously running instances of IPARS (Implicit Parallel Accurate Reservoir Simulator), a black box, compute intensive oil-reservoir history matching application. The results of each stage were filtered through an Ensemble Kalman Filter (EnKF). Each IPARS instance (or ensemble member) required a varying number of processors and fast communication among these processors. Furthermore, the number of stages and number of ensemble members per stage were dynamic and depended on the specific problem and the desired level of accuracy. CometCloud was responsible for orchestrating the execution of the overall workflow, i.e. running the IPARS instances and integrating their results with the EnKF. Once the set of ensemble members associated with a stage have completed execution, the CometCloud workflow engine ran the EnKF step to process the results produced by these instances and generate the set of ensemble members for the next stage. The Blue Gene agent then dynamically adjusted resources (scaled up, down or out) to accommodate the new set of ensemble members. The entire process was repeated until the application objectives, i.e., the desired level of accuracy was achieved, and then all resources were released and final results returned to the user.


 
Figure 3: Application scenario demonstrated at IEEE SCALE 2011

The demonstration at the IEEE SCALE 2011 started by running a workflow stage with 10 initial ensemble members, where each ensemble member required between 32-128 processors. To run this, 5 partitions (32 nodes each, a total of 640 processors total) were provisioned on the IBM Blue Gene/P at Yorktown Heights, NY. The user then requested a faster time to completion, which resulted in an increase in the number of partitions provisioned to 10 (32 nodes each, a total of 1,280 processors total). This phase of the demonstration illustrated the ease of use as well as dynamic scale-up enabled using CometCloud.

In the next phase of the demonstration, the application increased the desired level of accuracy, which resulted in an increase in the number of ensemble members to 150. Maintaining the desired time to completion required a dynamic scale up in the number of resources, and the number of partitions that need to be provisioned was greater than those available at the IBM Blue Gene/P at Yorktown heights, NY (i.e., 128 partitions, 32 nodes each for a total of 16,384 processors). This resulted in CometCloud scaling out, and dynamically federating the Blue Gene/P at KAUST in Saudi Arabia. It then provisioned 22 partitions, (64 nodes each, 5,632 processors total) on this system. The ensemble members were dynamically scheduled on the federated multi-cloud composed of the two geographically distributed HPC systems, an aggregate 22,016 processors.

The project team consisted of Manish Parashar, Moustafa AbdelBaky, and Hyunjoo Kim (CAC, Rutgers Univ.), Kirk Jordan, Hani Jamjoom, Vipin Sachdeva, Zon-Yin Shae and James Sexton (IBM T.J. Watson Research Center), and Gergina Pencheva, Reza Tavakoli, and Mary F. Wheeler (CSM, UT Austin).

Team

Moustafa AbdelBaky is a Ph.D. Student at Rutgers University. Hyunjoo Kim is a Postdoctoral Associate at Rutgers University. Manish Parashar is a Professor at Rutgers University. Kirk E. Jordan is the Emerging Solutions Executive and Associate Program Director in the Computational Science Center at IBM T.J. Watson Research Center. Hani Jamjoom is a Research Manager at IBM T.J. Watson Research Center. Vipin Sachdeva is a Researcher in the Computation Science Center at IBM T.J. Watson Research Center. Zon-Yin Shae is a Researcher at IBM T.J. Watson Research Center. James Sexton is Program Director in the Computational Science Center at IBM T.J. Watson Research Center. Gergina Pencheva is a Research Associate at the Center for Subsurface Modeling at The University of Texas at Austin. Reza Tavakoli is a Postdoctoral Fellow at the Center for Subsurface Modeling at The University of Texas at Austin. Mary F. Wheeler is Ernest and Virginia Cockrell Chair in Engineering at The University of Texas at Austin.

More information can be found at http://nsfcac.rutgers.edu/icode/scale

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This