Blue Gene Sniffs for Black Gold in the Cloud

By Manish Parashar

June 27, 2011

SCALE 2011 Winner Supercomputing as-a-Service using CometCloud

A multi-institutional team consisting of The Center for Autonomic Computing (Rutgers University), IBM T.J. Watson Research Center and Center for Subsurface Modeling (The University of Texas at Austin) was awarded the first place in the IEEE SCALE 2011 Challenge for their demonstration titled “A Scalable Ensemble-based Oil-Reservoir Simulations using Blue Gene/P-as-a-Service”. The demonstration provides supercomputing as-a-service by connecting two IBM Blue Gene/P systems in two different continents to form a large HPC Cloud using the CometCloud framework.

Emerging cloud services represent a new paradigm for computing based on an easy-to-use as-a-service abstraction, on-demand access to computing utilities, on-demand scale-up/down/out, and a usage-based payment model where users essentially “rent” virtual resources and pay for what they use. Underlying these cloud services are consolidated and virtualized data centers that provide virtual machine (VM) containers hosting applications from large numbers of distributed users. The cloud paradigm has the potential for significantly impacting price/performance behaviors and trade-offs for a wide range of applications and IT services, and as a result, there has been a proliferation of a wide range of cloud offerings spanning different levels including infrastructure-as-a-service, platform-as-a-service, software-as-a-service and applications-as-a-service.

However, existing cloud services have been largely ineffective for many HPC applications, which are becoming increasingly important in understanding the complex processes for many domains including Aerospace, Automobile, Entertainment, Finance, Manufacturing, Oil & Gas, Pharmaceuticals, etc. Reasons for this include the limited capabilities and power of the typical underlying hardware and its non-homogeneity, the lack of high-speed interconnects to support data exchanges required by many HPC applications, as well as the physical distance between machines.

While the requirements of this class of HPC application are well served by high-end supercomputing systems that provide the necessary scales and compute/communication capabilities, these systems required relatively low-level user involvement and expert knowledge, and as a result, only a few “hero” users are able to effectively use these cutting edge systems. Furthermore, these high-end resources do not typically support elasticity and dynamic scalability. Clearly, HPC applications running on these supercomputing systems could significantly benefit from the cloud abstraction, in particular from the perspectives of ease-of-use, on-demand access, elasticity and dynamic allocation of resources, as well as the integration of multiple high-end systems.

CometCloud: Federated Multi-Clouds On-Demand!

CometCloud (www.cometcloud.org) is an autonomic cloud-computing engine that enables the dynamic and on-demand federation of heterogeneous clouds, the extension of the cloud abstraction to HPC-grids and clusters, and the deployment and execution of applications on dynamically federated multi-clouds (i.e., hybrid infrastructure integrating (public & private) clouds, data-centers and enterprise Grids). A schematic overview of the CometCloud architecture is presented in Figure 1.

CometCloud provides (1) infrastructure services for synthesizing robust and secure virtual clouds through dynamic federation and coordination to enable on-demand scale-up, scale-down and scale-out, (2) programming support for enabling cloud deployments of application using popular programming models (e.g., MapReduce, Master/Worker) and application workflows, and (3) services for autonomic monitoring and management of infrastructure and applications. CometCloud is currently being used for cloud deployments of science, engineering and business application workflows.

Scalable Ensemble-based Oil-Reservoir Simulations using Blue Gene/P as-a-Service – Winner of the IEEE International SCALE 2011 Challenge

It is clear that the cloud model can alleviate some of the problems of HPC applications described above. The overarching goal of our IEEE SCALE 2011 demonstration was to illustrate this by showing how a cloud abstraction can be effectively used to provide a simple interface for current HPC resources and support real-world HPC applications. Specifically, we used CometCloud to essentially transform Blue Gene/P supercomputer systems into a federated elastic cloud, supporting dynamic provisioning and efficient utilization while maximizing ease-of-use through an as-a-service abstraction.

The overall configuration of the federated HPC-cloud used in the IEEE SCALE 2011 demonstration is illustrated in Figure 2. In this figure CometCloud was responsible for orchestrating the execution of the overall workflow. Note that the application components were used as-is without having to modify them. Deep Cloud, a reservation based system developed by IBM T.J. Watson Research Center, was responsible for the physical allocation of resources required to execute these tasks. The Blue Gene agent monitored the size of the tasks in the CometCloud task pool and communicated with Deep Cloud to obtain information about the current available resources. Using this information, the agent requested the appropriate allocation of Blue Gene/P resources and integrated them into the federated multi-cloud. Note that resources, which are no longer required, are deallocated.

The demonstration used a real-world ensemble application. Ensemble applications represent a significant class of HPC applications that require effective utilization of high-end Petascale and eventually Exascale systems. These applications explore large parameter spaces in order to simulate multi-scale and multiphase models and minimize uncertainty. Running ensemble applications require a large and dynamic pool of HPC resources and fast interconnects between the processing nodes.

The overall application scenario used in the demonstration is presented in Figure 3. The workflow consisted of multiple stages, each stage consisting of multiple, simultaneously running instances of IPARS (Implicit Parallel Accurate Reservoir Simulator), a black box, compute intensive oil-reservoir history matching application. The results of each stage were filtered through an Ensemble Kalman Filter (EnKF). Each IPARS instance (or ensemble member) required a varying number of processors and fast communication among these processors. Furthermore, the number of stages and number of ensemble members per stage were dynamic and depended on the specific problem and the desired level of accuracy. CometCloud was responsible for orchestrating the execution of the overall workflow, i.e. running the IPARS instances and integrating their results with the EnKF. Once the set of ensemble members associated with a stage have completed execution, the CometCloud workflow engine ran the EnKF step to process the results produced by these instances and generate the set of ensemble members for the next stage. The Blue Gene agent then dynamically adjusted resources (scaled up, down or out) to accommodate the new set of ensemble members. The entire process was repeated until the application objectives, i.e., the desired level of accuracy was achieved, and then all resources were released and final results returned to the user.


 
Figure 3: Application scenario demonstrated at IEEE SCALE 2011

The demonstration at the IEEE SCALE 2011 started by running a workflow stage with 10 initial ensemble members, where each ensemble member required between 32-128 processors. To run this, 5 partitions (32 nodes each, a total of 640 processors total) were provisioned on the IBM Blue Gene/P at Yorktown Heights, NY. The user then requested a faster time to completion, which resulted in an increase in the number of partitions provisioned to 10 (32 nodes each, a total of 1,280 processors total). This phase of the demonstration illustrated the ease of use as well as dynamic scale-up enabled using CometCloud.

In the next phase of the demonstration, the application increased the desired level of accuracy, which resulted in an increase in the number of ensemble members to 150. Maintaining the desired time to completion required a dynamic scale up in the number of resources, and the number of partitions that need to be provisioned was greater than those available at the IBM Blue Gene/P at Yorktown heights, NY (i.e., 128 partitions, 32 nodes each for a total of 16,384 processors). This resulted in CometCloud scaling out, and dynamically federating the Blue Gene/P at KAUST in Saudi Arabia. It then provisioned 22 partitions, (64 nodes each, 5,632 processors total) on this system. The ensemble members were dynamically scheduled on the federated multi-cloud composed of the two geographically distributed HPC systems, an aggregate 22,016 processors.

The project team consisted of Manish Parashar, Moustafa AbdelBaky, and Hyunjoo Kim (CAC, Rutgers Univ.), Kirk Jordan, Hani Jamjoom, Vipin Sachdeva, Zon-Yin Shae and James Sexton (IBM T.J. Watson Research Center), and Gergina Pencheva, Reza Tavakoli, and Mary F. Wheeler (CSM, UT Austin).

Team

Moustafa AbdelBaky is a Ph.D. Student at Rutgers University. Hyunjoo Kim is a Postdoctoral Associate at Rutgers University. Manish Parashar is a Professor at Rutgers University. Kirk E. Jordan is the Emerging Solutions Executive and Associate Program Director in the Computational Science Center at IBM T.J. Watson Research Center. Hani Jamjoom is a Research Manager at IBM T.J. Watson Research Center. Vipin Sachdeva is a Researcher in the Computation Science Center at IBM T.J. Watson Research Center. Zon-Yin Shae is a Researcher at IBM T.J. Watson Research Center. James Sexton is Program Director in the Computational Science Center at IBM T.J. Watson Research Center. Gergina Pencheva is a Research Associate at the Center for Subsurface Modeling at The University of Texas at Austin. Reza Tavakoli is a Postdoctoral Fellow at the Center for Subsurface Modeling at The University of Texas at Austin. Mary F. Wheeler is Ernest and Virginia Cockrell Chair in Engineering at The University of Texas at Austin.

More information can be found at http://nsfcac.rutgers.edu/icode/scale

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This