Why Lustre Is Set to Excel in Exascale

By Brent Gorda, CEO and President, Whamcloud

June 27, 2011

File systems are a critical component of the modern supercomputing architectural model. Tying together vast numbers of compute nodes to achieve the highest computational speeds depends on a set of robust, coordinated fire hoses of data to connect the compute to the storage. Just as the computational model has gone parallel, so too has the storage.

Recent exascale plans call for a technology demonstration system in the 2015 timeframe. That system is planned for 400 petaflops peak and thus requires more data than can be delivered in a single stream. Using the aging ASC* ratios of 1000:1, 400 petaflops would require 400 terabytes/second from the file system.

To satisfy these kinds of I/O demands, should the HPC community start from scratch or build out from current file system technologies? File systems must go ultra-parallel to keep up with increasing data speed requirements, but what technical approach is best?

Evolutionary or revolutionary is the key question.

The hardware story is deja vu. With compute, the answer that worked was to boost performance on the single unit and go widely parallel. Until power limitations and massive parallelism issues get in the way, this approach is a proven strategy. With storage, for hundreds to thousands of storage units, this approach will carry the weight as well. Today, as individual scalable storage units (SSUs) accelerate toward double-digit gigabytes per second, a terabyte per second of I/O bandwidth – the stretch goal for current DOE work – is within reach.

On the software side, however, building parallel file systems has proven to be a challenge. It is widely believed that it takes ten years to mature a file system to the point it is usable in production HPC environments. That is not to say that a newcomer could not steal the show, but it does give some indication of the level of effort required to establish a new file system. By that metric it is already late in the game to start up a new file system project.

As the best example of the evolutionary path, there are multiple and significant benefits to the Lustre file system. It is open source, it is mature, it is widely used in government and academic sites, it has years of strong corporate support and it has the right architectural base from which to conduct cutting edge development.

Lustre is the market leading storage solution for HPC. It is extremely popular, especially in government and academic HPC. Lustre is implemented in about 70 of the top 100 systems in the Top 500 list (http://www.top500.org/) and many of these sites have made considerable investments into using and developing Lustre.

Being open source, Lustre has also been used extensively in the academic community as a development workbench. This has given students and researchers a unique opportunity to try out their ideas “for real” rather than relying on simulation results. When you are looking for solutions to a very large and complicated problem, you can do no better than to have a great number of academic research institutions already familiar with the technology, using it, and contributing to its growth.

HPC file system technologists generally agree that the POSIX storage API imposes fundamental obstacles to scalability and, therefore, will have to be abandoned for exascale. Any unintended contention or serialization is prohibitive at exascale and although there is disagreement on the specifics, there is general consensus that exascale file systems will be based on some sort of object store.

Since Lustre is based on an object store, it already has the right fundamental architecture for exascale. The evolution that is required is to make this object store accessible safely and tractably to applications and users. One possible approach is to introduce new file types to Lustre that will provide exascale object storage semantics internally. This will require development of the underlying object model, but it holds the promise that the same file system will be able to support the full range of applications from (legacy) POSIX through to exascale.

Finally, Lustre is both mature and stable today, which is a necessary starting point for rapid and diverse development. Lustre started as a project in 1999 and was developed by the company that created it, Cluster File Systems, until that company was acquired by Sun in 2007. After the acquisition, Sun and subsequently Oracle invested considerable money and effort in Lustre to prioritize stability and maturity. One example was that in 2008, Sun joined the Hyperion consortium created by Lawrence Livermore National Laboratory (LLNL) and made extensive use of the 1,152 node test Hyperion cluster. The results have been impressive and Lustre 1.8.5 released by Oracle is in wide and stable use throughout the world. At just over 13 years old, Lustre has indeed passed the ten-year-to-maturity metric.

The path to exascale is risky, but an evolutionary approach with Lustre, the leading open source technology, seems the best way to mitigate the risk. Starting over entails re-inventing much of the infrastructure (e.g., networking and data movement, metadata and recovery capabilities) that makes up a distributed file system and seems a needless diversion from getting to the meat of the problem.

By starting with proven, robust and mature technologies, it is possible to focus on the significant issues relating to exascale performance. What’s more, an open source solution already popular in the research community primes the research agenda to ensure the best talent is engaged and the best answers will emerge.

The end result may not contain so much of the original Lustre code base and it may not even share the same name by the time we get to exascale. But starting with Lustre gives our community the best chance of success producing the exascale file system performance, reliability and maturity that will be required by high performance computing.

—–

* In 1995, the Advanced Simulation and Computing (ASC) program was conceived to support the Department of Energy’s National Nuclear Security Administration (NNSA) mission of maintaining the country’s nuclear arsenal without the benefit of underground nuclear testing.

—–

About the author

Brent Gorda, Whamcloud CEO and President, joined Whamcloud from the US Department of Energy where he was involved in program funding and strategic adoption of the Lustre File System at the Lawrence Livermore National Laboratory and other ASCI labs.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

Xilinx Says Its New FPGA is World’s Largest

August 21, 2019

In this age of exploding “technology disaggregation” – in which the Big Bang emanating from the Intel x86 CPU has produced significant advances in CPU chips and a raft of alternative, accelerated architectures... Read more…

By Doug Black

Supercomputers Generate Universes to Illuminate Galactic Formation

August 20, 2019

With advanced imaging and satellite technologies, it’s easier than ever to see a galaxy – but understanding how they form (a process that can take billions of years) is a different story. Now, a team of researchers f Read more…

By Oliver Peckham

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Singularity Moves Up the Container Value Chain

August 20, 2019

The enterprise version of the Singularity HPC container platform released this week by Sylabs is designed to allow users to create, secure and share the high-end containers in self-hosted production deployments. The e Read more…

By George Leopold

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

IBM Deepens Plunge into Open Source; OpenPOWER to Join Linux Foundation

August 20, 2019

IBM today announced it was contributing the instruction set (ISA) for its Power microprocessor and the designs for the Open Coherent Accelerator Processor Inter Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This