Why Lustre Is Set to Excel in Exascale

By Brent Gorda, CEO and President, Whamcloud

June 27, 2011

File systems are a critical component of the modern supercomputing architectural model. Tying together vast numbers of compute nodes to achieve the highest computational speeds depends on a set of robust, coordinated fire hoses of data to connect the compute to the storage. Just as the computational model has gone parallel, so too has the storage.

Recent exascale plans call for a technology demonstration system in the 2015 timeframe. That system is planned for 400 petaflops peak and thus requires more data than can be delivered in a single stream. Using the aging ASC* ratios of 1000:1, 400 petaflops would require 400 terabytes/second from the file system.

To satisfy these kinds of I/O demands, should the HPC community start from scratch or build out from current file system technologies? File systems must go ultra-parallel to keep up with increasing data speed requirements, but what technical approach is best?

Evolutionary or revolutionary is the key question.

The hardware story is deja vu. With compute, the answer that worked was to boost performance on the single unit and go widely parallel. Until power limitations and massive parallelism issues get in the way, this approach is a proven strategy. With storage, for hundreds to thousands of storage units, this approach will carry the weight as well. Today, as individual scalable storage units (SSUs) accelerate toward double-digit gigabytes per second, a terabyte per second of I/O bandwidth – the stretch goal for current DOE work – is within reach.

On the software side, however, building parallel file systems has proven to be a challenge. It is widely believed that it takes ten years to mature a file system to the point it is usable in production HPC environments. That is not to say that a newcomer could not steal the show, but it does give some indication of the level of effort required to establish a new file system. By that metric it is already late in the game to start up a new file system project.

As the best example of the evolutionary path, there are multiple and significant benefits to the Lustre file system. It is open source, it is mature, it is widely used in government and academic sites, it has years of strong corporate support and it has the right architectural base from which to conduct cutting edge development.

Lustre is the market leading storage solution for HPC. It is extremely popular, especially in government and academic HPC. Lustre is implemented in about 70 of the top 100 systems in the Top 500 list (http://www.top500.org/) and many of these sites have made considerable investments into using and developing Lustre.

Being open source, Lustre has also been used extensively in the academic community as a development workbench. This has given students and researchers a unique opportunity to try out their ideas “for real” rather than relying on simulation results. When you are looking for solutions to a very large and complicated problem, you can do no better than to have a great number of academic research institutions already familiar with the technology, using it, and contributing to its growth.

HPC file system technologists generally agree that the POSIX storage API imposes fundamental obstacles to scalability and, therefore, will have to be abandoned for exascale. Any unintended contention or serialization is prohibitive at exascale and although there is disagreement on the specifics, there is general consensus that exascale file systems will be based on some sort of object store.

Since Lustre is based on an object store, it already has the right fundamental architecture for exascale. The evolution that is required is to make this object store accessible safely and tractably to applications and users. One possible approach is to introduce new file types to Lustre that will provide exascale object storage semantics internally. This will require development of the underlying object model, but it holds the promise that the same file system will be able to support the full range of applications from (legacy) POSIX through to exascale.

Finally, Lustre is both mature and stable today, which is a necessary starting point for rapid and diverse development. Lustre started as a project in 1999 and was developed by the company that created it, Cluster File Systems, until that company was acquired by Sun in 2007. After the acquisition, Sun and subsequently Oracle invested considerable money and effort in Lustre to prioritize stability and maturity. One example was that in 2008, Sun joined the Hyperion consortium created by Lawrence Livermore National Laboratory (LLNL) and made extensive use of the 1,152 node test Hyperion cluster. The results have been impressive and Lustre 1.8.5 released by Oracle is in wide and stable use throughout the world. At just over 13 years old, Lustre has indeed passed the ten-year-to-maturity metric.

The path to exascale is risky, but an evolutionary approach with Lustre, the leading open source technology, seems the best way to mitigate the risk. Starting over entails re-inventing much of the infrastructure (e.g., networking and data movement, metadata and recovery capabilities) that makes up a distributed file system and seems a needless diversion from getting to the meat of the problem.

By starting with proven, robust and mature technologies, it is possible to focus on the significant issues relating to exascale performance. What’s more, an open source solution already popular in the research community primes the research agenda to ensure the best talent is engaged and the best answers will emerge.

The end result may not contain so much of the original Lustre code base and it may not even share the same name by the time we get to exascale. But starting with Lustre gives our community the best chance of success producing the exascale file system performance, reliability and maturity that will be required by high performance computing.

—–

* In 1995, the Advanced Simulation and Computing (ASC) program was conceived to support the Department of Energy’s National Nuclear Security Administration (NNSA) mission of maintaining the country’s nuclear arsenal without the benefit of underground nuclear testing.

—–

About the author

Brent Gorda, Whamcloud CEO and President, joined Whamcloud from the US Department of Energy where he was involved in program funding and strategic adoption of the Lustre File System at the Lawrence Livermore National Laboratory and other ASCI labs.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire