Moore’s Law Meets Exascale Computing

By Michael Feldman

June 29, 2011

There are no exascale supercomputers yet, but there are plenty of research papers on the subject. The latest is a short but intense white paper centering on some of the specific challenges related to CMOS technology over the next decade and a half. The paper’s principal focus is about dealing with the end of Moore’s Law, which, according to best predictions, will occur during the decade of exascale computing.

Titled Exascale Research: Preparing for the Post-Moore Era (PDF), the paper is authored by HPC experts Marc Snir, Bill Gropp and Peter Kogge, who argue that we need to start using CMOS technology much more efficiently, while simultaneously accelerating the development of its replacement.

One of the tenets of supercomputing, and information technology in general, is that processors are expected to get more powerful and less expensive each year. Like the shark that needs to keep swimming to stay alive, the IT industry is based on the assumption that the hardware has to keep moving forward to support the expectations of the market.

This is certainly true for exascale proponents, who see the next level of HPC capability as a way to move forward on big science problems and help solve global challenges like climate change mitigation and the development of alternative energy sources. In the US, there is also the need to support our nuclear stockpile with compute-intensive virtual simulations — a task that is becoming increasingly difficult as the original expertise in designing and testing nuclear weapons disappears.

National security, too, has become very dependent on supercomputing. As the authors state, “In
an era where information becomes the main weapon of war, the US cannot afford to be outcomputed anymore that it can afford to be outgunned.”

It’s a given that the semiconductors behind exascale computing will, at least initially, use CMOS, a technology that’s been in common use since the 1970s. The problem is that CMOS (complementary-symmetry metal–oxide–semiconductor) is slowly giving way to the unrelenting laws of physics. Due to increasing leakage current, voltage scaling has already plateaued. That occurred nearly a decade ago when transistor feature size reached 130 nm. The result was that processor speeds leveled off.

And soon feature scaling will end as well. According to the white paper, CMOS technology will grind to a halt sometime in the middle of the next decade when the size of transistors reaches around 7 nm — about 30 atoms of silicon crystal. As the authors put it:

We have become accustomed to the relentless improvement in the density of silicon chips, leading to a doubling of the number of transistors per chip every 18 months, as predicted by “Moore’s Law”. In the process, we have forgotten “Stein’s Law”: “If something cannot go on forever, it will stop.”

And unfortunately there is currently no technology to take the place of CMOS, although a number of candidates are on the table. Spintronics, nanowires, nanotubes, graphene, and other more exotic technologies are all being tested in the research labs, but none are ready to provide a wholesale replacement of CMOS. To that end, one of the principal recommendations of the authors is for more government funding to accelerate the evaluation, research and development of these technologies, as a precursor to commercial production 10 to 15 years down the road.

It should be noted, as the authors do, that the peak performance of supercomputer has increased faster than CMOS scaling, so merely switching technologies is not a panacea for high performance computing. In particular, HPC systems have gotten more powerful by increasing the number of processors, on top of gains realized by shrinking CMOS geometries. That has repercussions in the failure rate of the system, which is growing in concert with system size.

The larger point is that the end of CMOS scaling can’t be compensated for just by adding more chips. In fact, it’s already assumed that the processor count, memory capacity, and other components will have to grow substantially to reach exascale levels, and the increased failure rates will have to be dealt with separately.

On the CMOS front, the main issue is power consumption, most of which is not strictly related to computation. The paper cites a recent report that projected a 2018-era processor will use 475 picojoules/flop for memory access versus 10 picojoules/flop for the floating point unit. The memory access includes both on-chip communication associated with cache access and off-chip communication to main memory.

To mitigate this, the authors say that smarter use of processor circuitry needs to be pursued. That includes both hardware (e.g., lower power circuits and denser packaging) and software (e.g., algorithms than minimize data movement and languages able to specify locality). More energy-aware communication protocols are also needed.

The good news is that most of the performance/power improvements discussed in the paper will also benefit the commodity computing space. But the authors also say that some of the technology required to support future HPC systems will not be needed by the volume market:

We need to identify where commodity technologies are most likely to diverge from the technologies needed to continue the fast progress in the performance of high-end platforms; and we need government funding in order to accelerate the research and development of those technologies that are essential for high-­end computing but are unlikely to have broad markets.

The authors aren’t suggesting we need to build graphene supercomputers, while the rest of the world moves to spintronics. But there may be certain key technologies that can be wrapped around post-CMOS computing that will be unique to exascale computing. As always, the tricky part will be to find the right mix of commodity and HPC-specific technologies to keep the industry moving forward.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Simulations Validate NASA Crash Testing

February 17, 2020

Car crash simulation is already a challenging supercomputing task, requiring pinpoint estimation of how hundreds of components interact with turbulent forces and human bodies. Spacecraft crash simulation is far more diff Read more…

By Oliver Peckham

What’s New in HPC Research: Quantum Clouds, Interatomic Models, Genetic Algorithms & More

February 14, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or at least, pull off the cloud HPC equivalent. As part of thei Read more…

By Oliver Peckham

ORNL Team Develops AI-based Cancer Text Mining Tool on Summit

February 13, 2020

A group of Oak Ridge National Laboratory researchers working on the Summit supercomputer has developed a new neural network tool for fast extraction of information from cancer pathology reports to speed research and clin Read more…

By John Russell

Nature Serves up Another Challenge to Quantum Computing?

February 13, 2020

Just when you thought it was safe to assume quantum computing – though distant – would eventually succumb to clever technology, another potentially confounding factor pops up. It’s the Heisenberg Limit (HL), close Read more…

By John Russell

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Researchers Enlist Three Supercomputers to Apply Deep Learning to Extreme Weather

February 12, 2020

When it comes to extreme weather, an errant forecast can have serious effects. While advance warning can give people time to prepare for the weather as it did with the polar vortex last year, the absence of accurate adva Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or Read more…

By Oliver Peckham

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops p Read more…

By Tiffany Trader

Trump Budget Proposal Again Slashes Science Spending

February 11, 2020

President Donald Trump’s FY2021 U.S. Budget, submitted to Congress this week, again slashes science spending. It’s a $4.8 trillion statement of priorities, Read more…

By John Russell

Policy: Republicans Eye Bigger Science Budgets; NSF Celebrates 70th, Names Idea Machine Winners

February 5, 2020

It’s a busy week for science policy. Yesterday, the National Science Foundation announced winners of its 2026 Idea Machine contest seeking directions for futu Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Intel Stopping Nervana Development to Focus on Habana AI Chips

February 3, 2020

Just two months after acquiring Israeli AI chip start-up Habana Labs for $2 billion, Intel is stopping development of its existing Nervana neural network proces Read more…

By John Russell

Lise Supercomputer, Part of HLRN-IV, Begins Operations

January 29, 2020

The second phase of the build-out of HLRN-IV – the planned 16 peak-petaflops supercomputer serving the North-German Supercomputing Alliance (HLRN) – is unde Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This