Moore’s Law Meets Exascale Computing

By Michael Feldman

June 29, 2011

There are no exascale supercomputers yet, but there are plenty of research papers on the subject. The latest is a short but intense white paper centering on some of the specific challenges related to CMOS technology over the next decade and a half. The paper’s principal focus is about dealing with the end of Moore’s Law, which, according to best predictions, will occur during the decade of exascale computing.

Titled Exascale Research: Preparing for the Post-Moore Era (PDF), the paper is authored by HPC experts Marc Snir, Bill Gropp and Peter Kogge, who argue that we need to start using CMOS technology much more efficiently, while simultaneously accelerating the development of its replacement.

One of the tenets of supercomputing, and information technology in general, is that processors are expected to get more powerful and less expensive each year. Like the shark that needs to keep swimming to stay alive, the IT industry is based on the assumption that the hardware has to keep moving forward to support the expectations of the market.

This is certainly true for exascale proponents, who see the next level of HPC capability as a way to move forward on big science problems and help solve global challenges like climate change mitigation and the development of alternative energy sources. In the US, there is also the need to support our nuclear stockpile with compute-intensive virtual simulations — a task that is becoming increasingly difficult as the original expertise in designing and testing nuclear weapons disappears.

National security, too, has become very dependent on supercomputing. As the authors state, “In
an era where information becomes the main weapon of war, the US cannot afford to be outcomputed anymore that it can afford to be outgunned.”

It’s a given that the semiconductors behind exascale computing will, at least initially, use CMOS, a technology that’s been in common use since the 1970s. The problem is that CMOS (complementary-symmetry metal–oxide–semiconductor) is slowly giving way to the unrelenting laws of physics. Due to increasing leakage current, voltage scaling has already plateaued. That occurred nearly a decade ago when transistor feature size reached 130 nm. The result was that processor speeds leveled off.

And soon feature scaling will end as well. According to the white paper, CMOS technology will grind to a halt sometime in the middle of the next decade when the size of transistors reaches around 7 nm — about 30 atoms of silicon crystal. As the authors put it:

We have become accustomed to the relentless improvement in the density of silicon chips, leading to a doubling of the number of transistors per chip every 18 months, as predicted by “Moore’s Law”. In the process, we have forgotten “Stein’s Law”: “If something cannot go on forever, it will stop.”

And unfortunately there is currently no technology to take the place of CMOS, although a number of candidates are on the table. Spintronics, nanowires, nanotubes, graphene, and other more exotic technologies are all being tested in the research labs, but none are ready to provide a wholesale replacement of CMOS. To that end, one of the principal recommendations of the authors is for more government funding to accelerate the evaluation, research and development of these technologies, as a precursor to commercial production 10 to 15 years down the road.

It should be noted, as the authors do, that the peak performance of supercomputer has increased faster than CMOS scaling, so merely switching technologies is not a panacea for high performance computing. In particular, HPC systems have gotten more powerful by increasing the number of processors, on top of gains realized by shrinking CMOS geometries. That has repercussions in the failure rate of the system, which is growing in concert with system size.

The larger point is that the end of CMOS scaling can’t be compensated for just by adding more chips. In fact, it’s already assumed that the processor count, memory capacity, and other components will have to grow substantially to reach exascale levels, and the increased failure rates will have to be dealt with separately.

On the CMOS front, the main issue is power consumption, most of which is not strictly related to computation. The paper cites a recent report that projected a 2018-era processor will use 475 picojoules/flop for memory access versus 10 picojoules/flop for the floating point unit. The memory access includes both on-chip communication associated with cache access and off-chip communication to main memory.

To mitigate this, the authors say that smarter use of processor circuitry needs to be pursued. That includes both hardware (e.g., lower power circuits and denser packaging) and software (e.g., algorithms than minimize data movement and languages able to specify locality). More energy-aware communication protocols are also needed.

The good news is that most of the performance/power improvements discussed in the paper will also benefit the commodity computing space. But the authors also say that some of the technology required to support future HPC systems will not be needed by the volume market:

We need to identify where commodity technologies are most likely to diverge from the technologies needed to continue the fast progress in the performance of high-end platforms; and we need government funding in order to accelerate the research and development of those technologies that are essential for high-­end computing but are unlikely to have broad markets.

The authors aren’t suggesting we need to build graphene supercomputers, while the rest of the world moves to spintronics. But there may be certain key technologies that can be wrapped around post-CMOS computing that will be unique to exascale computing. As always, the tricky part will be to find the right mix of commodity and HPC-specific technologies to keep the industry moving forward.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This