Moore’s Law Meets Exascale Computing

By Michael Feldman

June 29, 2011

There are no exascale supercomputers yet, but there are plenty of research papers on the subject. The latest is a short but intense white paper centering on some of the specific challenges related to CMOS technology over the next decade and a half. The paper’s principal focus is about dealing with the end of Moore’s Law, which, according to best predictions, will occur during the decade of exascale computing.

Titled Exascale Research: Preparing for the Post-Moore Era (PDF), the paper is authored by HPC experts Marc Snir, Bill Gropp and Peter Kogge, who argue that we need to start using CMOS technology much more efficiently, while simultaneously accelerating the development of its replacement.

One of the tenets of supercomputing, and information technology in general, is that processors are expected to get more powerful and less expensive each year. Like the shark that needs to keep swimming to stay alive, the IT industry is based on the assumption that the hardware has to keep moving forward to support the expectations of the market.

This is certainly true for exascale proponents, who see the next level of HPC capability as a way to move forward on big science problems and help solve global challenges like climate change mitigation and the development of alternative energy sources. In the US, there is also the need to support our nuclear stockpile with compute-intensive virtual simulations — a task that is becoming increasingly difficult as the original expertise in designing and testing nuclear weapons disappears.

National security, too, has become very dependent on supercomputing. As the authors state, “In
an era where information becomes the main weapon of war, the US cannot afford to be outcomputed anymore that it can afford to be outgunned.”

It’s a given that the semiconductors behind exascale computing will, at least initially, use CMOS, a technology that’s been in common use since the 1970s. The problem is that CMOS (complementary-symmetry metal–oxide–semiconductor) is slowly giving way to the unrelenting laws of physics. Due to increasing leakage current, voltage scaling has already plateaued. That occurred nearly a decade ago when transistor feature size reached 130 nm. The result was that processor speeds leveled off.

And soon feature scaling will end as well. According to the white paper, CMOS technology will grind to a halt sometime in the middle of the next decade when the size of transistors reaches around 7 nm — about 30 atoms of silicon crystal. As the authors put it:

We have become accustomed to the relentless improvement in the density of silicon chips, leading to a doubling of the number of transistors per chip every 18 months, as predicted by “Moore’s Law”. In the process, we have forgotten “Stein’s Law”: “If something cannot go on forever, it will stop.”

And unfortunately there is currently no technology to take the place of CMOS, although a number of candidates are on the table. Spintronics, nanowires, nanotubes, graphene, and other more exotic technologies are all being tested in the research labs, but none are ready to provide a wholesale replacement of CMOS. To that end, one of the principal recommendations of the authors is for more government funding to accelerate the evaluation, research and development of these technologies, as a precursor to commercial production 10 to 15 years down the road.

It should be noted, as the authors do, that the peak performance of supercomputer has increased faster than CMOS scaling, so merely switching technologies is not a panacea for high performance computing. In particular, HPC systems have gotten more powerful by increasing the number of processors, on top of gains realized by shrinking CMOS geometries. That has repercussions in the failure rate of the system, which is growing in concert with system size.

The larger point is that the end of CMOS scaling can’t be compensated for just by adding more chips. In fact, it’s already assumed that the processor count, memory capacity, and other components will have to grow substantially to reach exascale levels, and the increased failure rates will have to be dealt with separately.

On the CMOS front, the main issue is power consumption, most of which is not strictly related to computation. The paper cites a recent report that projected a 2018-era processor will use 475 picojoules/flop for memory access versus 10 picojoules/flop for the floating point unit. The memory access includes both on-chip communication associated with cache access and off-chip communication to main memory.

To mitigate this, the authors say that smarter use of processor circuitry needs to be pursued. That includes both hardware (e.g., lower power circuits and denser packaging) and software (e.g., algorithms than minimize data movement and languages able to specify locality). More energy-aware communication protocols are also needed.

The good news is that most of the performance/power improvements discussed in the paper will also benefit the commodity computing space. But the authors also say that some of the technology required to support future HPC systems will not be needed by the volume market:

We need to identify where commodity technologies are most likely to diverge from the technologies needed to continue the fast progress in the performance of high-end platforms; and we need government funding in order to accelerate the research and development of those technologies that are essential for high-­end computing but are unlikely to have broad markets.

The authors aren’t suggesting we need to build graphene supercomputers, while the rest of the world moves to spintronics. But there may be certain key technologies that can be wrapped around post-CMOS computing that will be unique to exascale computing. As always, the tricky part will be to find the right mix of commodity and HPC-specific technologies to keep the industry moving forward.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This