SGI Revamps Altix ICE Design

By Michael Feldman

July 5, 2011

For the past five years, SGI’s Altix ICE platform has been the company’s bread and butter HPC cluster offering. That trend looks to continue as they gear up for their fifth generation design. But this iteration of Altix ICE, codenamed “Carlsbad 3,” is more than just a processor and InfiniBand refresh.

According to SGI marketing VP Bill Mannel, the first four generations of Altix ICE were variations on a theme, using essentially the same blade infrastructure. As Intel or AMD came up with new processors and Mellanox rolled out faster InfiniBand parts, SGI slapped them into the Altix ICE lineup. But Carlsbad 3 has been redesigned from scratch, says Mannel.

Like many HPC blade vendors, SGI is going after the three big attributes customers are clamoring for: higher density, lower cost, and more efficient cooling. Just riding the Moore’s Law curve for microprocessors gets you halfway there for the first two attributes, but better cooling required some re-engineering on SGI’s part.

The previous versions of Altix ICE relied on either standard air cooling or liquid cooling in the form of water cooled doors bolted onto the enclosures. But like a lot of denser blades, SGI has added the option for a cold plate, where the liquid runs against the hottest components of the blade. That design also allow for warm water cooling, where the water temperature can run up to a tepid 30 degrees Celsius (86F), and which can be cooled via a liquid-to-air exchange rather than a power-sucking chiller. Although this is a new feature for the Altix ICE, the cooling technology is derived from the Rackable ICE Cube container that SGI offers today.

Mannel says the 30C limit for warm water cooling is showing up in more RFPs, and is becoming more accepted as datacenters, HPC or otherwise, are forced to cram more compute capacity into the same building. For supercomputing setups, this can be especially useful for customers who want to build their systems with extra-hot processors like high-bin (high GHz) x86 parts and big wattage accelerators like GPUs.

Speaking of which, the new ICE machines will sport the new Sandy Bridge EP Xeons, Intel’s upcoming CPU offering for dual-socket servers. As far as accelerators go, at the very least SGI will be offering NVIDIA’s latest GPUs, either the standard M2090 Tesla modules or the related X2090 designed for extra-dense blade setups. According to Mannel, the final design is being worked out this month.

And although Intel’s MIC (Many Integrated Core) Knights Corner coprocessor won’t be arriving until later in 2012, it’s a pretty sure bet that the Altix ICE will adopt them when the Intel releases the commercial product. At the International Supercomputing Conference last month, SGI was one Intel’s system partners cheerleading the MIC development effort. (Currently SGI offers a MIC development system based on the Rackable H4002 server and the Knights Ferry part.) In fact, MIC is apt to show up across multiple SGI HPC offerings next year. “We do intend to include it into our system plans going forward,” says Mannel.

InfiniBand, too, got an upgrade in the Carlsbad 3 design. The default interconnect will be Mellanox FDR InfiniBand, but since SGI is using mezzanine cards for the network I/O, the customer could opt for 10GbE too. The rational behind mezzanine cards is that they are cheaper than using discrete network adapters and more flexible than hardwiring each blade with as specific interconnect by plopping the network silicon directly onto the motherboard. Also, when EDR InfiniBand goes into production, customers should be able to just swap the FDR cards with the EDR version, leaving the compute blade as is.

Also for increased flexibility, the SGI engineers went to a power shelf design. In the current ICE setup, the power supplies are inside the blade enclosure; with the new design, they will be in separate units. That allows customers to add (or subtract) power supplies as needed, as for example, when installing more blades or hooking up accelerators.

Density wise, Carlsbad 3 will offer two configurations, each more compact than the current Altix ICE 8400. In the standard configuration, the new ICE will up the blade count from 16 to 18 per 10U enclosure. That’s 12 percent more compute per rack unit. And since the Sandy Bridge chips will provide up to 2 more cores per socket than the 6-core Westmere EP silicon in the 8400, the compute density gets another 33 percent boost.

Also, instead of coming in 24-inch wide racks, the engineers have squished them into standard 19-inch boxes. That will enable the new machines to more easily co-exist with vanilla datacenter gear.

The other density innovation is their M-Rack configuration. Basically it’s a double density setup that is able to fit twice as many blades (36) into an enclosure by sandwiching two motherboards into a blade slot — what they call the Gemini Twin blade. The M-Rack essentially flips two standard racks 90 degrees and pushes them together, squeezing out the space that would have been the hot aisle (and compensating with the type of water cooling discussed above.) The M-rack is nearly twice as dense as the new standard density offering and nearly 3 times as dense as the current Altix ICE 8400.

The new ICE machines are scheduled to start shipping in December and according to Mannel they already have some customers in the pipeline. Although he didn’t say, one of them could be NASA, which recently upgraded their Altix ICE Pleiades supercomputer with additional hardware. That system is now in the petaflop club and sits at number 7 on the TOP500 list.

SGI’s biggest supercomputer to date, Pleiades represents a microcosm Altix ICE history. The system was originally installed in 2008 and has been upgraded on a continuous basis ever since. Through the aggregation of Altix ICE hardware of various generations, it now contains a mixture Harpertown, Nehalem and Westmere Xeon processors and a combination of DDR and QDR InfiniBand networks.

Pleiades may end up as a 10 petaflop system as early as next year, as was the original intention of NASA. If so, that is almost certain to be accomplished with the upcoming Carlsbad 3 blades, most likely souped up with accelerators. And given SGI’s and NASA’s penchant for Intel silicon, those accelerators could very well be MIC coprocessors.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This