Biotech Company Forges Path to High Performance Healthcare

By Michael Feldman

July 6, 2011

GNS Healthcare is one of those companies that wouldn’t have existed in the 20th century. It promotes itself as “a healthcare IT company that applies technology to optimize patient treatment.” As such, GNS is at the forefront of a new era of drug development and delivery that is moving personalized medicine from theory into practice.

Headquartered in Cambridge, Massachusetts, GNS is the brainchild of Cornell physicists Colin Hill and Iya Khalil, who founded the original company in 2000, under the name Gene Network Sciences. Hill is now the CEO and president of GNS and Khalil is the company’s Executive VP. Their idea was to exploit supercomputing technologies, in the form of “big data” analytics, to identify genetic biomarkers for drug efficacy.

Such an approach requires the ingestion of large volumes of genetic and clinical data, along with lots of data-intensive processing, both of which were expensive propositions a decade ago. In 2000, a modest-sized cluster with a few dozen processors would take a year to analyze a person’s genetic profile.

But technology has caught up to GNS’ aspirations. Thanks to cheaper DNA sequencing technologies to generate the raw data and much more powerful (and less expensive) high performance computing systems to process it, such analytics is now within the reach of commercial firms. Hill believes supercomputing, in particular, will enable advances in drug R&D that would otherwise have been impossible.

Much of that advancement is wrapped around the idea of personalized medicine. One of its principle tenets is to better match drugs to an individual’s genetic makeup in order to make treatments safer and more effective. These compounds work at the molecular level and because even small genetic variations can produce big differences in a person’s physical makeup, drug efficacy can vary significantly from one person to another. In a nutshell, the idea is to correlate these pharmaceuticals with a person’s unique molecular characteristics.

Pharmaceutical companies, healthcare providers and patients all stand to benefit from better targeted drugs since, in theory at least, it drives down costs for everyone and delivers better results. Given the public’s focus on reigning in healthcare expenses and the industry’s concern with producing lawsuit-free drugs that will survive long enough to recoup development investments, a technology that delivers on both fronts would be welcome indeed.

To that end, GNS has developed a software platform that is able to analyze how genes, proteins and drugs interact in a virtual model. Dubbed Reverse Engineering/Forward Simulation (REFS), the software uses HPC clusters, or in some cases bona fide supercomputers, to sift through the data and figure out how all the bio-bits fit together.

In essence, the GNS software delivers a virtual clinical trial. But instead of taking millions of dollars and years to accomplish, the simulated version can be executed for a fraction of the cost in weeks or even just days. No one is ever put at risk, and there are no waivers to sign.

To accomplish this in silico, REFS creates a system interaction model of all the components represented by the data (reverse engineering) and then uses billions of queries (forward simulation) to reveal the most important genes and proteins driving those interactions. Importantly, it can also predict interactions for “what if” scenarios.

The technology was interesting enough to get the attention of DARPA, the US Department of Defense’s research arm, which funded a case study on the GNS work. The effort, in collaboration with the Council on Competiveness, was part of a project to demonstrate the business case for high-end modeling and simulation technologies. This particular case study focused on a recent GNS collaboration with drug R&D specialist Biogen Idec.

The work with Biogen was to build a computational model for identifying novel drugs for rheumatoid arthritis sufferers. Today about a third of arthritis patients do not respond to the most commonly used anti-inflammation therapies (anti-TNF drugs). Since 1 to 2 percent of the world’s population suffers from this condition, there is a lot of interest in developing more effective treatments.

The project with Biogen involved sifting through the genetic data from 70 arthritis patients to look for single nucleotide polymorphisms (SNPs), which are short sequences of DNA in which a nucleotide base in the sequence has been is altered. Gene expression data from the patients’ blood as well as clinical information like pain levels, swollen joints, and other blood markers, were also encapsulated. Models were built from this data, which could then subsequently be used to conduct simulations with different drug compounds.

The data- and compute-intensive nature of the process is hard to fathom. Although only 70 patients were evaluated, it involved correlating hundreds of thousands of genetic variables on top of numerous clinical variables for each patient. Trillions of models were then constructed against each dataset. For example, REFS can simulate the “knock-down” of an individual gene by a certain drug, and then evaluate the result. With so many genes in the mix, the combinations can quickly escalate.

This was the first time a computer model of rheumatoid arthritis was developed that could be used to test new drugs and target pathways for individual patients. And it’s not just that they’ve replace clinical trials with virtual ones. The sheer number of combinations that can be tested, not to mention the ability to virtualize risky drug scenarios means these simulations can go far beyond clinical testing. You just need enough computing horsepower make it work.

From Hill’s perspective, the key technology to move this technology forward is high performance computing. “We have this strong conviction that the major game-changing advances in the biomedical sciences, drug development and patient care will not occur on a short time-scale without the extreme use of supercomputing,” he says.

GNS itself has only a modest HPC setup, but its computational demands are nearly insatiable. Much of the time it uses big machines like IBM Blue Gene supercomputers (on-demand) and larger clusters from its partners. Besides Biogen Idec, Johnson & Johnson and Pfizer have teamed with GNS on other drug R&D projects, and the company is also engaged with a number of academic and non-profit research organizations.

If solutions like that from GNS deliver on their promise, they will have arrived in the nick of time. Skyrocketing labor and drug development costs and aging populations are straining healthcare delivery in much of the developed world. For less economically fortunate nations, 21st century healthcare is simply out of reach. For both rich and poor, the era of personalized medicine can’t happen too soon enough.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This