Researchers Spin Up Supercomputer for Brain Simulation

By Michael Feldman

July 7, 2011

Under the category of “Grand Challenge” applications, perhaps none is grander than simulation of the human brain. Reflecting the complexity and scale of the brain with current computer technology is truly a daunting task. But a group of researchers and computer scientists at a number of UK universities are attempting to do just that under a project named SpiNNaker.

SpiNNaker, which stands for Spiking Neural Network architecture, aims to map the brain’s functions for the purpose of helping neuroscientists, psychologists and doctors understand brain injuries, diseases and other neurological conditions. The project is being run out of a group at University of Manchester, which designed the system architecture, and is being funded by a £5m grant from the Engineering and Physical Sciences Research Council (EPSRC). Other elements of the SpiNNaker system are being developed at the universities of Southampton, Cambridge and Sheffield.

For the casual observer, constructing a facsimile of the most complex organ in the human body from digital technology may see like a natural fit for computers. The view of the brain as a biological processor (and the processor as a digital brain) is well entrenched in popular culture. But the designs are fundamentally different.

Operationally, computers are precise, extremely fast and deterministic; brains are imprecise, slow, and non-deterministic. And, of course the underlying architectures are completely different. Computers relying on digital electronics, while the brain employs a complex mix of biomolecular structures and processes.

The SpiNNaker design meets the architecture of the brain halfway by going for lots of simple, low-power computing units, in this case, ARM968 processors. The initial Manchester-designed SpiNNaker multi-processor is a custom SoC with 18 of these processors integrated on-chip. (The original spec called for 20 processors per chip.) The multi-processor also incorporates a local bus, called Network-on-Chip or NoC, which links up the individual processors and off-chip memory. Each SpiNNaker node is reported to draw less than one watt of power, while delivering the computational throughput of a typical PC.

The design is purpose-built to simulate the action of spiking neurons. Spiking in this context means when neurons are stimulated above a certain threshold level to generate an event that can be propagated across a neural net. But instead of using neurotransmitters to do this, the computer is just passing data packets around.

To be truly useful, the spiking needs to happen in real-time. Fortunately, this is where computer technology shines. Electrical communication is actually more efficient than the biochemical version, so nothing exotic needs to be done in the hardware to make all this magical neural spiking a virtual reality.

And that may happen soon. The design phase of the project is coming to a close and the SpiNNaker team is starting to gather the pieces together. According to a news release this week, SpiNNaker chips were delivered in June (from Taiwan — presumable TSMC), and have passed their functionality tests. The plan is to build a 50,000-node machine with up to one million ARM processors.

While that seems like a lot, researchers estimate that it will only be enough to represent about one percent of the real deal. A human brain contains around 100 billion neurons along with 1,000 million connections and a single ARM processor in the SpiNNaker chip can only handle 1,000 neurons. The good news is that one percent may be enough to answer a lot of questions about the functional operation of the brain.

Even at one percent, the scale of the machine is probably the trickiest part of the project. With so many processors in the mix, there are bound to be individual failures at fairly regular intervals. To deal with the inevitable, the designers made SpiNNaker fault tolerant at multiple levels. For example, each of the ARM processors can be disabled if they fail at start-up and a chip can remain functional even if “several processors fail.” If an entire chip goes south, data can be rerouted to neighboring chips thanks to redundant inter-chip links.

The other challenge to scaling out is power, but here is where the ARM architecture pays dividends. The initial system of 50,000 nodes is estimated to draw just 23 KW to 36 KW of power. By supercomputing standards, that’s just a pittance.  Of course, judged against the 20 watt version in our heads, SpiNNaker has a ways to go.

The power profile suggests that if there are no inherent scaling limitations in the hardware or software, the design could conceivably be used to build a machine that would support a “complete” human brain simulation for just a few megawatts. With improved process technology, that could easily slip into the sub-megawatt level.

For all that, SpiNNaker isn’t designed to simulate higher level cognitive features — the most interesting function of the brain. Inevitably that will require more complex hardware and software. So even if someone builds a super-sized SpiNNaker, it won’t come close to the functionality of the 100 percent organic version anytime soon.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Natcast/NSTC Issues Roadmap to Implement CHIPS and Science Act

May 29, 2024

Yesterday, CHIPS for America and Natcast, the operator of the National Semiconductor Technology Center (NSTC), released a roadmap of early steps for implementing portions of the ambitious $5 billion program. Natcast is t Read more…

Scientists Use GenAI to Uncover New Insights in Materials Science

May 29, 2024

With the help of generative AI, researchers from MIT and the University of Basel in Switzerland have developed a new machine-learning framework that can help uncover new insights about materials science. The findings of Read more…

Microsoft’s ARM-based CPU Cobalt will Support Windows 11 in the Cloud

May 29, 2024

Microsoft's ARM-based CPU, called Cobalt, is now available in the cloud for public consumption. Cobalt is Microsoft's first homegrown CPU, which was first announced six months ago. The cloud-based Cobalt VMs will support Read more…

2024 Winter Classic Finale! Gala Awards Ceremony

May 28, 2024

We wrapped up the competition with our traditional Gala Awards Ceremony. This was an exciting show, given that only 40 points or so separated first place from fifth place after the Google GROMACS Challenge and heading in Read more…

IBM Makes a Push Towards Open-Source Services, Announces New watsonx Updates

May 28, 2024

Today, IBM declared that it is releasing a number of noteworthy changes to its watsonx platform, with the goal of increasing the openness, affordability, and flexibility of the platform’s AI capabilities. Announced Read more…

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storage, throughput, and new computing technologies. This round Read more…

Scientists Use GenAI to Uncover New Insights in Materials Science

May 29, 2024

With the help of generative AI, researchers from MIT and the University of Basel in Switzerland have developed a new machine-learning framework that can help un Read more…

watsonx

IBM Makes a Push Towards Open-Source Services, Announces New watsonx Updates

May 28, 2024

Today, IBM declared that it is releasing a number of noteworthy changes to its watsonx platform, with the goal of increasing the openness, affordability, and fl Read more…

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storag Read more…

ISC 2024 — A Few Quantum Gems and Slides from a Packed QC Agenda

May 22, 2024

If you were looking for quantum computing content, ISC 2024 was a good place to be last week — there were around 20 quantum computing related sessions. QC eve Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire