Researchers Spin Up Supercomputer for Brain Simulation

By Michael Feldman

July 7, 2011

Under the category of “Grand Challenge” applications, perhaps none is grander than simulation of the human brain. Reflecting the complexity and scale of the brain with current computer technology is truly a daunting task. But a group of researchers and computer scientists at a number of UK universities are attempting to do just that under a project named SpiNNaker.

SpiNNaker, which stands for Spiking Neural Network architecture, aims to map the brain’s functions for the purpose of helping neuroscientists, psychologists and doctors understand brain injuries, diseases and other neurological conditions. The project is being run out of a group at University of Manchester, which designed the system architecture, and is being funded by a £5m grant from the Engineering and Physical Sciences Research Council (EPSRC). Other elements of the SpiNNaker system are being developed at the universities of Southampton, Cambridge and Sheffield.

For the casual observer, constructing a facsimile of the most complex organ in the human body from digital technology may see like a natural fit for computers. The view of the brain as a biological processor (and the processor as a digital brain) is well entrenched in popular culture. But the designs are fundamentally different.

Operationally, computers are precise, extremely fast and deterministic; brains are imprecise, slow, and non-deterministic. And, of course the underlying architectures are completely different. Computers relying on digital electronics, while the brain employs a complex mix of biomolecular structures and processes.

The SpiNNaker design meets the architecture of the brain halfway by going for lots of simple, low-power computing units, in this case, ARM968 processors. The initial Manchester-designed SpiNNaker multi-processor is a custom SoC with 18 of these processors integrated on-chip. (The original spec called for 20 processors per chip.) The multi-processor also incorporates a local bus, called Network-on-Chip or NoC, which links up the individual processors and off-chip memory. Each SpiNNaker node is reported to draw less than one watt of power, while delivering the computational throughput of a typical PC.

The design is purpose-built to simulate the action of spiking neurons. Spiking in this context means when neurons are stimulated above a certain threshold level to generate an event that can be propagated across a neural net. But instead of using neurotransmitters to do this, the computer is just passing data packets around.

To be truly useful, the spiking needs to happen in real-time. Fortunately, this is where computer technology shines. Electrical communication is actually more efficient than the biochemical version, so nothing exotic needs to be done in the hardware to make all this magical neural spiking a virtual reality.

And that may happen soon. The design phase of the project is coming to a close and the SpiNNaker team is starting to gather the pieces together. According to a news release this week, SpiNNaker chips were delivered in June (from Taiwan — presumable TSMC), and have passed their functionality tests. The plan is to build a 50,000-node machine with up to one million ARM processors.

While that seems like a lot, researchers estimate that it will only be enough to represent about one percent of the real deal. A human brain contains around 100 billion neurons along with 1,000 million connections and a single ARM processor in the SpiNNaker chip can only handle 1,000 neurons. The good news is that one percent may be enough to answer a lot of questions about the functional operation of the brain.

Even at one percent, the scale of the machine is probably the trickiest part of the project. With so many processors in the mix, there are bound to be individual failures at fairly regular intervals. To deal with the inevitable, the designers made SpiNNaker fault tolerant at multiple levels. For example, each of the ARM processors can be disabled if they fail at start-up and a chip can remain functional even if “several processors fail.” If an entire chip goes south, data can be rerouted to neighboring chips thanks to redundant inter-chip links.

The other challenge to scaling out is power, but here is where the ARM architecture pays dividends. The initial system of 50,000 nodes is estimated to draw just 23 KW to 36 KW of power. By supercomputing standards, that’s just a pittance.  Of course, judged against the 20 watt version in our heads, SpiNNaker has a ways to go.

The power profile suggests that if there are no inherent scaling limitations in the hardware or software, the design could conceivably be used to build a machine that would support a “complete” human brain simulation for just a few megawatts. With improved process technology, that could easily slip into the sub-megawatt level.

For all that, SpiNNaker isn’t designed to simulate higher level cognitive features — the most interesting function of the brain. Inevitably that will require more complex hardware and software. So even if someone builds a super-sized SpiNNaker, it won’t come close to the functionality of the 100 percent organic version anytime soon.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This