The Next Step in Human Brain Simulation

By Michael Feldman

July 11, 2011

Can the human brain devise a system capable of understanding itself? That’s been something brain simulation researchers have been working toward for nearly a decade. With recent advances in supercomputing capabilities and modeling techniques, the question may soon be answered.

Understanding the fundamental workings of the brain would revolutionize neuroscience. It is estimated that about a quarter of the population in the US and Europe has some sort of brain disorder, spanning everything from anxiety attacks and mild depression to Alzheimer’s and full-blown neuroses. Brain-related health care costs currently amount to over a trillion dollars per year in the West, along with another trillion in lost productivity. To put it mildly, it is a problem that needs fixing.

The brain simulation SpiNNaker project, which recently got is first shipment of custom-built supercomputer chips, is the UK’s contribution to the effort. Far better known (and better funded) is the Blue Brain Project, headed by neuroscientist-turned-informatics-specialist Henry Markram, and run out of the École Polytechnique Fédérale in Lausanne (EPFL).

Markram is now advocating for an even more ambitious endeavor. Known as the Human Brain Project, it is a 10 year effort estimated to cost a billion euros. The goal is to build upon the knowledge accumulated under the Blue Brain work — software models, tools, supercomputing expertise — and create a multi-level simulation of the entire human brain. That will require exascale-level hardware and the software to exploit it.

At the International Supercomputing Conference in Hamburg last month, Markram described his current work and the future of virtual neuroscience. In his keynote address (available online here), he noted that the pharmaceutical industry, which funds 95 percent of the research in this area, expends its resources on a just handful of the 560 clinically classified brain disorders, in this case, the diseases that have the most attractive payoff from a drugmaker’s perspective. The other 5 percent of the funding comes from academia, which is tasked to research and develop possible treatments for the vast majority of neurological conditions.

In both cases though, the approach has been reductionist: to focus on the specific neurological structures and mechanisms that underlie a disorder. From Markram’s perspective, that strategy has led to only piecemeal progress. “The solution,” he says, “is to integrate it all… using simulations, into a unified model.”

We asked Markram to talk about the work he’s been doing on the Blue Brain Project and give us his vision of how human brain simulation will advance in the coming years.

HPCwire: Could you give us an overview of your work and what you intend to accomplish?

Henry Markram: Our mission has been to establish a radically new way approach to understanding the brain. The best way to describe it is, ICT powered biology. It is a highly integrative approach of building the brain using biological rules and data intensive computing. The brain is built on biological rules and it stands to reason you can use the same rules to build a model that generates many of the brain’s functions. The advantage of this approach is that when a function does emerge, we can actually trace a meaningful biological basis for that function.

Diseases are also likely to result where ever a rule can break and so searching for vulnerable rules provides a new strategy for predicting causes of diseases. Each step involves searching for patterns of organization in biological data (informatics), deriving rules (algorithms) and using the rules to build a new generation of models (modeling) for simulation testing (simulations). Simulating the new generation models reveals the strengths and weaknesses of the rules which we can use to refine the rules and also to find new rules that we can use to build even more accurate models.

It is a rule discovery process — a telescope into the brain which does not only depend on the hardware and software for its resolution, but also on the rules. As we build the “telescope” we can look deeper and wider into the brain, and it helps us build a better telescope: better software, better hardware, and better rules. We need constant innovations in supercomputing technologies, informatics technologies — the hardware and software. These allow us to build larger and larger brain models with more and more detail.

In 2008 we could build and simulate 10,000 neurons and 10 million synapses using a Blue Gene/L supercomputer. Today we can build models with 1 million neurons and 1 billion synapses using a Blue Gene/P supercomputer. These are not point neurons as in artificial neural networks or neuromorphic computing. They are the most detailed and accurate models of real neurons ever built. And we also now build them automatically now and we are learning how to synthesize them using basic rules.

There is a long way to go, but we have built the ICT infrastructure that now allows us to move faster. It is the first version of a platform for ICT powered biology. The models only get better and so it is a one-way track to understanding the rules that build the brain. In the process, it also provides a roadmap for supercomputing of the future. Understanding the rules also reveals computational principles which we aim to exploit in artificial neural networks and neuromorphic computing – exporting simplified circuit designs which desired functions.

We have put neuroscience on the IT highway and we will now be able to move exponentially faster. We have found dozens of new rules in the process demonstrating that this form of IT powered biology is a powerful new way of systematically integrating what we know about the brain and using ICT to chart new territory of the brain that would take experimental biology many decades to reach.

HPCwire: Who is funding the work and about how much money is involved?

Markram: We had to buy IBM’s supercomputers and this was bought not only for the Blue Brain Project, but also for many other projects. It has been funded by the universities in the area collectively. For operations, the first prototype phase till now has not been very expensive — similar to a large RO1 grant that most US scientists run on — an average of a million Swiss francs per year. To continue will cost much more and that is why we are proposing the Human Brain Project to the European Union. With a budget of around €100M per year, we can pick up speed.

HPCwire: What kind of computers are currently at your disposal? What are the current limitations of these systems in regard to the simulations?

Markram: We now have a Blue Gene/P with over 16,000 cores. Of course we are at the computing limit, we constantly need more computing power. This is perhaps the most extreme challenge for supercomputing. We will need an exascale system to simulate the human brain at a cellular level and with the capability of performing molecular resolution simulations only for zoomed areas of activity. We need to boost exascale to go beyond that.

HPCwire: What does the output of the simulation look like?

Markram: Just like experiments on real brain tissue. In other words, we can do electrical recordings, we can record the transmission between neurons or networks of neurons, we can image activity of all the neurons, we can record electrical fields generated by one neuron or all the neurons together, and so on. But, we can perform experiments that are not yet possible in the experimental lab and will not be possible for a very long time. We can record or map any parameter that we used to build the model. We can also map searched patterns of activity, etc. It is a very powerful “lab” and designed for biology-style experimentation. Like a virtual laboratory.

HPCwire: About how many lines of code are we talking about?

Markram: It is not one piece of code, it is a huge ecosystem of code that deals with the informatics, brain building, simulation, visualization, analysis, virtual lab experiments, real-time uplinks, etc. We have not counted all the lines of code, but it is long and growing.
 
HPCwire: What have you learned from the work so far?

Markram: Most importantly we established the infrastructure to do this. It is unique in the world. We have not just solved a computer science problem, but also the ultimate integration of computer science and neuroscience. We had to solve dozens of problems to get to a workable ecosystem where we can build models according to biological rules. In terms of understanding the brain, we discovered many rules that would not be possible to find experimentally.

We found general rules that now allow automated building of very accurate neurons; we found general rules that help us connect any neuron to another – the so called “connectome;” we found general rules for robustness and invariance of neural circuits, that is, we know what neural circuits are resistant to damage and what makes neural circuits that same even when the elements are different; we found general rules for emergent properties as we add columns, and many more. We also found new computing strategies that will add a new dimension to my previous discovery of liquid computing with Wolfgang Maass.

HPCwire: What is the next step for your work?

Markram: We are expanding the capability and capacity of the ICT infrastructure to allow building of a whole brain (rodent level) and to build neurons models with molecular level detail. To do this we will need to make the next step in computing power with a petascale supercomputer.

HPCwire: At what point do you think you’ll be able to simulate a complete human brain?

Markram: I always say 10 years because I believe it is technically possible in 10 years. But the clock can only start ticking once we get the proper funding to go beyond this initial stage. It cannot be done on thin air. If we get the FET Flagship grant in 2013, then by 2023-2024 we will be capable of assembling all we know to build a human brain model. If we don’t get the funding it will take decades longer.

HPCwire: Will such a simulation exhibit the same properties as the organic version? Do you think features like creativity and emotions could emerge? How about consciousness?

Markram: This is a research tool, it is not a toy to see what will happen if one builds a brain. It is not a magical model that suddenly explains to you all the secrets of the brain. It is a model that takes our knowledge to built it in the first place. We learn at each step and will probably understand most of the key principles well before we build the first model of the human brain. It is a research tool for collaborative in silico experiments and hypothesis testing.

If the model is built on biological rules and we can implement these rules accurately enough, many functions should emerge without us having to explicitly program them in. If it does not, then obviously we missed something or we could not capture the detail with sufficient accuracy. Such a “failure” is also a great success and just as important as when function does emerge, since it means that all that has gone into the model is just not enough.

Everyone argues about how much detail is needed for complex functions. Well this way, we will not have to argue. Either way we learn. You can’t lose with this approach.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflops Tianhe-2 and currently with the 93-petaflops TaihuLight. T Read more…

By Tiffany Trader

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present usability and programmability problems that flummox IT shops. Read more…

By Doug Black

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger communities? That question is at the heart of a new study pub Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Google Launches Site to Share its NYC-based Algorithm Research

August 22, 2017

Much of Google’s algorithm development occurs in groups scattered throughout New York City. Yesterday, Google launched a single website - NYC Algorithms and Optimization Team page - to provide a deeper view into all of Read more…

By John Russell

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflop Read more…

By Tiffany Trader

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present u Read more…

By Doug Black

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger c Read more…

By Tiffany Trader

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This