The Next Step in Human Brain Simulation

By Michael Feldman

July 11, 2011

Can the human brain devise a system capable of understanding itself? That’s been something brain simulation researchers have been working toward for nearly a decade. With recent advances in supercomputing capabilities and modeling techniques, the question may soon be answered.

Understanding the fundamental workings of the brain would revolutionize neuroscience. It is estimated that about a quarter of the population in the US and Europe has some sort of brain disorder, spanning everything from anxiety attacks and mild depression to Alzheimer’s and full-blown neuroses. Brain-related health care costs currently amount to over a trillion dollars per year in the West, along with another trillion in lost productivity. To put it mildly, it is a problem that needs fixing.

The brain simulation SpiNNaker project, which recently got is first shipment of custom-built supercomputer chips, is the UK’s contribution to the effort. Far better known (and better funded) is the Blue Brain Project, headed by neuroscientist-turned-informatics-specialist Henry Markram, and run out of the École Polytechnique Fédérale in Lausanne (EPFL).

Markram is now advocating for an even more ambitious endeavor. Known as the Human Brain Project, it is a 10 year effort estimated to cost a billion euros. The goal is to build upon the knowledge accumulated under the Blue Brain work — software models, tools, supercomputing expertise — and create a multi-level simulation of the entire human brain. That will require exascale-level hardware and the software to exploit it.

At the International Supercomputing Conference in Hamburg last month, Markram described his current work and the future of virtual neuroscience. In his keynote address (available online here), he noted that the pharmaceutical industry, which funds 95 percent of the research in this area, expends its resources on a just handful of the 560 clinically classified brain disorders, in this case, the diseases that have the most attractive payoff from a drugmaker’s perspective. The other 5 percent of the funding comes from academia, which is tasked to research and develop possible treatments for the vast majority of neurological conditions.

In both cases though, the approach has been reductionist: to focus on the specific neurological structures and mechanisms that underlie a disorder. From Markram’s perspective, that strategy has led to only piecemeal progress. “The solution,” he says, “is to integrate it all… using simulations, into a unified model.”

We asked Markram to talk about the work he’s been doing on the Blue Brain Project and give us his vision of how human brain simulation will advance in the coming years.

HPCwire: Could you give us an overview of your work and what you intend to accomplish?

Henry Markram: Our mission has been to establish a radically new way approach to understanding the brain. The best way to describe it is, ICT powered biology. It is a highly integrative approach of building the brain using biological rules and data intensive computing. The brain is built on biological rules and it stands to reason you can use the same rules to build a model that generates many of the brain’s functions. The advantage of this approach is that when a function does emerge, we can actually trace a meaningful biological basis for that function.

Diseases are also likely to result where ever a rule can break and so searching for vulnerable rules provides a new strategy for predicting causes of diseases. Each step involves searching for patterns of organization in biological data (informatics), deriving rules (algorithms) and using the rules to build a new generation of models (modeling) for simulation testing (simulations). Simulating the new generation models reveals the strengths and weaknesses of the rules which we can use to refine the rules and also to find new rules that we can use to build even more accurate models.

It is a rule discovery process — a telescope into the brain which does not only depend on the hardware and software for its resolution, but also on the rules. As we build the “telescope” we can look deeper and wider into the brain, and it helps us build a better telescope: better software, better hardware, and better rules. We need constant innovations in supercomputing technologies, informatics technologies — the hardware and software. These allow us to build larger and larger brain models with more and more detail.

In 2008 we could build and simulate 10,000 neurons and 10 million synapses using a Blue Gene/L supercomputer. Today we can build models with 1 million neurons and 1 billion synapses using a Blue Gene/P supercomputer. These are not point neurons as in artificial neural networks or neuromorphic computing. They are the most detailed and accurate models of real neurons ever built. And we also now build them automatically now and we are learning how to synthesize them using basic rules.

There is a long way to go, but we have built the ICT infrastructure that now allows us to move faster. It is the first version of a platform for ICT powered biology. The models only get better and so it is a one-way track to understanding the rules that build the brain. In the process, it also provides a roadmap for supercomputing of the future. Understanding the rules also reveals computational principles which we aim to exploit in artificial neural networks and neuromorphic computing – exporting simplified circuit designs which desired functions.

We have put neuroscience on the IT highway and we will now be able to move exponentially faster. We have found dozens of new rules in the process demonstrating that this form of IT powered biology is a powerful new way of systematically integrating what we know about the brain and using ICT to chart new territory of the brain that would take experimental biology many decades to reach.

HPCwire: Who is funding the work and about how much money is involved?

Markram: We had to buy IBM’s supercomputers and this was bought not only for the Blue Brain Project, but also for many other projects. It has been funded by the universities in the area collectively. For operations, the first prototype phase till now has not been very expensive — similar to a large RO1 grant that most US scientists run on — an average of a million Swiss francs per year. To continue will cost much more and that is why we are proposing the Human Brain Project to the European Union. With a budget of around €100M per year, we can pick up speed.

HPCwire: What kind of computers are currently at your disposal? What are the current limitations of these systems in regard to the simulations?

Markram: We now have a Blue Gene/P with over 16,000 cores. Of course we are at the computing limit, we constantly need more computing power. This is perhaps the most extreme challenge for supercomputing. We will need an exascale system to simulate the human brain at a cellular level and with the capability of performing molecular resolution simulations only for zoomed areas of activity. We need to boost exascale to go beyond that.

HPCwire: What does the output of the simulation look like?

Markram: Just like experiments on real brain tissue. In other words, we can do electrical recordings, we can record the transmission between neurons or networks of neurons, we can image activity of all the neurons, we can record electrical fields generated by one neuron or all the neurons together, and so on. But, we can perform experiments that are not yet possible in the experimental lab and will not be possible for a very long time. We can record or map any parameter that we used to build the model. We can also map searched patterns of activity, etc. It is a very powerful “lab” and designed for biology-style experimentation. Like a virtual laboratory.

HPCwire: About how many lines of code are we talking about?

Markram: It is not one piece of code, it is a huge ecosystem of code that deals with the informatics, brain building, simulation, visualization, analysis, virtual lab experiments, real-time uplinks, etc. We have not counted all the lines of code, but it is long and growing.
 
HPCwire: What have you learned from the work so far?

Markram: Most importantly we established the infrastructure to do this. It is unique in the world. We have not just solved a computer science problem, but also the ultimate integration of computer science and neuroscience. We had to solve dozens of problems to get to a workable ecosystem where we can build models according to biological rules. In terms of understanding the brain, we discovered many rules that would not be possible to find experimentally.

We found general rules that now allow automated building of very accurate neurons; we found general rules that help us connect any neuron to another – the so called “connectome;” we found general rules for robustness and invariance of neural circuits, that is, we know what neural circuits are resistant to damage and what makes neural circuits that same even when the elements are different; we found general rules for emergent properties as we add columns, and many more. We also found new computing strategies that will add a new dimension to my previous discovery of liquid computing with Wolfgang Maass.

HPCwire: What is the next step for your work?

Markram: We are expanding the capability and capacity of the ICT infrastructure to allow building of a whole brain (rodent level) and to build neurons models with molecular level detail. To do this we will need to make the next step in computing power with a petascale supercomputer.

HPCwire: At what point do you think you’ll be able to simulate a complete human brain?

Markram: I always say 10 years because I believe it is technically possible in 10 years. But the clock can only start ticking once we get the proper funding to go beyond this initial stage. It cannot be done on thin air. If we get the FET Flagship grant in 2013, then by 2023-2024 we will be capable of assembling all we know to build a human brain model. If we don’t get the funding it will take decades longer.

HPCwire: Will such a simulation exhibit the same properties as the organic version? Do you think features like creativity and emotions could emerge? How about consciousness?

Markram: This is a research tool, it is not a toy to see what will happen if one builds a brain. It is not a magical model that suddenly explains to you all the secrets of the brain. It is a model that takes our knowledge to built it in the first place. We learn at each step and will probably understand most of the key principles well before we build the first model of the human brain. It is a research tool for collaborative in silico experiments and hypothesis testing.

If the model is built on biological rules and we can implement these rules accurately enough, many functions should emerge without us having to explicitly program them in. If it does not, then obviously we missed something or we could not capture the detail with sufficient accuracy. Such a “failure” is also a great success and just as important as when function does emerge, since it means that all that has gone into the model is just not enough.

Everyone argues about how much detail is needed for complex functions. Well this way, we will not have to argue. Either way we learn. You can’t lose with this approach.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This