The Next Step in Human Brain Simulation

By Michael Feldman

July 11, 2011

Can the human brain devise a system capable of understanding itself? That’s been something brain simulation researchers have been working toward for nearly a decade. With recent advances in supercomputing capabilities and modeling techniques, the question may soon be answered.

Understanding the fundamental workings of the brain would revolutionize neuroscience. It is estimated that about a quarter of the population in the US and Europe has some sort of brain disorder, spanning everything from anxiety attacks and mild depression to Alzheimer’s and full-blown neuroses. Brain-related health care costs currently amount to over a trillion dollars per year in the West, along with another trillion in lost productivity. To put it mildly, it is a problem that needs fixing.

The brain simulation SpiNNaker project, which recently got is first shipment of custom-built supercomputer chips, is the UK’s contribution to the effort. Far better known (and better funded) is the Blue Brain Project, headed by neuroscientist-turned-informatics-specialist Henry Markram, and run out of the École Polytechnique Fédérale in Lausanne (EPFL).

Markram is now advocating for an even more ambitious endeavor. Known as the Human Brain Project, it is a 10 year effort estimated to cost a billion euros. The goal is to build upon the knowledge accumulated under the Blue Brain work — software models, tools, supercomputing expertise — and create a multi-level simulation of the entire human brain. That will require exascale-level hardware and the software to exploit it.

At the International Supercomputing Conference in Hamburg last month, Markram described his current work and the future of virtual neuroscience. In his keynote address (available online here), he noted that the pharmaceutical industry, which funds 95 percent of the research in this area, expends its resources on a just handful of the 560 clinically classified brain disorders, in this case, the diseases that have the most attractive payoff from a drugmaker’s perspective. The other 5 percent of the funding comes from academia, which is tasked to research and develop possible treatments for the vast majority of neurological conditions.

In both cases though, the approach has been reductionist: to focus on the specific neurological structures and mechanisms that underlie a disorder. From Markram’s perspective, that strategy has led to only piecemeal progress. “The solution,” he says, “is to integrate it all… using simulations, into a unified model.”

We asked Markram to talk about the work he’s been doing on the Blue Brain Project and give us his vision of how human brain simulation will advance in the coming years.

HPCwire: Could you give us an overview of your work and what you intend to accomplish?

Henry Markram: Our mission has been to establish a radically new way approach to understanding the brain. The best way to describe it is, ICT powered biology. It is a highly integrative approach of building the brain using biological rules and data intensive computing. The brain is built on biological rules and it stands to reason you can use the same rules to build a model that generates many of the brain’s functions. The advantage of this approach is that when a function does emerge, we can actually trace a meaningful biological basis for that function.

Diseases are also likely to result where ever a rule can break and so searching for vulnerable rules provides a new strategy for predicting causes of diseases. Each step involves searching for patterns of organization in biological data (informatics), deriving rules (algorithms) and using the rules to build a new generation of models (modeling) for simulation testing (simulations). Simulating the new generation models reveals the strengths and weaknesses of the rules which we can use to refine the rules and also to find new rules that we can use to build even more accurate models.

It is a rule discovery process — a telescope into the brain which does not only depend on the hardware and software for its resolution, but also on the rules. As we build the “telescope” we can look deeper and wider into the brain, and it helps us build a better telescope: better software, better hardware, and better rules. We need constant innovations in supercomputing technologies, informatics technologies — the hardware and software. These allow us to build larger and larger brain models with more and more detail.

In 2008 we could build and simulate 10,000 neurons and 10 million synapses using a Blue Gene/L supercomputer. Today we can build models with 1 million neurons and 1 billion synapses using a Blue Gene/P supercomputer. These are not point neurons as in artificial neural networks or neuromorphic computing. They are the most detailed and accurate models of real neurons ever built. And we also now build them automatically now and we are learning how to synthesize them using basic rules.

There is a long way to go, but we have built the ICT infrastructure that now allows us to move faster. It is the first version of a platform for ICT powered biology. The models only get better and so it is a one-way track to understanding the rules that build the brain. In the process, it also provides a roadmap for supercomputing of the future. Understanding the rules also reveals computational principles which we aim to exploit in artificial neural networks and neuromorphic computing – exporting simplified circuit designs which desired functions.

We have put neuroscience on the IT highway and we will now be able to move exponentially faster. We have found dozens of new rules in the process demonstrating that this form of IT powered biology is a powerful new way of systematically integrating what we know about the brain and using ICT to chart new territory of the brain that would take experimental biology many decades to reach.

HPCwire: Who is funding the work and about how much money is involved?

Markram: We had to buy IBM’s supercomputers and this was bought not only for the Blue Brain Project, but also for many other projects. It has been funded by the universities in the area collectively. For operations, the first prototype phase till now has not been very expensive — similar to a large RO1 grant that most US scientists run on — an average of a million Swiss francs per year. To continue will cost much more and that is why we are proposing the Human Brain Project to the European Union. With a budget of around €100M per year, we can pick up speed.

HPCwire: What kind of computers are currently at your disposal? What are the current limitations of these systems in regard to the simulations?

Markram: We now have a Blue Gene/P with over 16,000 cores. Of course we are at the computing limit, we constantly need more computing power. This is perhaps the most extreme challenge for supercomputing. We will need an exascale system to simulate the human brain at a cellular level and with the capability of performing molecular resolution simulations only for zoomed areas of activity. We need to boost exascale to go beyond that.

HPCwire: What does the output of the simulation look like?

Markram: Just like experiments on real brain tissue. In other words, we can do electrical recordings, we can record the transmission between neurons or networks of neurons, we can image activity of all the neurons, we can record electrical fields generated by one neuron or all the neurons together, and so on. But, we can perform experiments that are not yet possible in the experimental lab and will not be possible for a very long time. We can record or map any parameter that we used to build the model. We can also map searched patterns of activity, etc. It is a very powerful “lab” and designed for biology-style experimentation. Like a virtual laboratory.

HPCwire: About how many lines of code are we talking about?

Markram: It is not one piece of code, it is a huge ecosystem of code that deals with the informatics, brain building, simulation, visualization, analysis, virtual lab experiments, real-time uplinks, etc. We have not counted all the lines of code, but it is long and growing.
 
HPCwire: What have you learned from the work so far?

Markram: Most importantly we established the infrastructure to do this. It is unique in the world. We have not just solved a computer science problem, but also the ultimate integration of computer science and neuroscience. We had to solve dozens of problems to get to a workable ecosystem where we can build models according to biological rules. In terms of understanding the brain, we discovered many rules that would not be possible to find experimentally.

We found general rules that now allow automated building of very accurate neurons; we found general rules that help us connect any neuron to another – the so called “connectome;” we found general rules for robustness and invariance of neural circuits, that is, we know what neural circuits are resistant to damage and what makes neural circuits that same even when the elements are different; we found general rules for emergent properties as we add columns, and many more. We also found new computing strategies that will add a new dimension to my previous discovery of liquid computing with Wolfgang Maass.

HPCwire: What is the next step for your work?

Markram: We are expanding the capability and capacity of the ICT infrastructure to allow building of a whole brain (rodent level) and to build neurons models with molecular level detail. To do this we will need to make the next step in computing power with a petascale supercomputer.

HPCwire: At what point do you think you’ll be able to simulate a complete human brain?

Markram: I always say 10 years because I believe it is technically possible in 10 years. But the clock can only start ticking once we get the proper funding to go beyond this initial stage. It cannot be done on thin air. If we get the FET Flagship grant in 2013, then by 2023-2024 we will be capable of assembling all we know to build a human brain model. If we don’t get the funding it will take decades longer.

HPCwire: Will such a simulation exhibit the same properties as the organic version? Do you think features like creativity and emotions could emerge? How about consciousness?

Markram: This is a research tool, it is not a toy to see what will happen if one builds a brain. It is not a magical model that suddenly explains to you all the secrets of the brain. It is a model that takes our knowledge to built it in the first place. We learn at each step and will probably understand most of the key principles well before we build the first model of the human brain. It is a research tool for collaborative in silico experiments and hypothesis testing.

If the model is built on biological rules and we can implement these rules accurately enough, many functions should emerge without us having to explicitly program them in. If it does not, then obviously we missed something or we could not capture the detail with sufficient accuracy. Such a “failure” is also a great success and just as important as when function does emerge, since it means that all that has gone into the model is just not enough.

Everyone argues about how much detail is needed for complex functions. Well this way, we will not have to argue. Either way we learn. You can’t lose with this approach.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This