JP Morgan Buys Into FPGA Supercomputing

By Michael Feldman

July 13, 2011

One of the largest financial institutions in the world is using FPGA-based supercomputing for analyzing some of its largest and most complex credit derivative portfolios. JP Morgan, along with Maxeler Technologies, has built and deployed a state-of-the art HPC system capable of number-crunching the company’s collateralized debt obligation (CDO) portfolio in near real-time.

CDOs are instruments in which the credit assets are divided into different bundles or tranches, according to their relative risk of default. During the credit crisis of 2007-2008, CDO valuation tanked as the value of the underlying assets, mostly mortgages, fell off a cliff. Part of the problem was that many of the computer models didn’t assess the risk parameters of the various mortgages correctly. The less obvious aspect was that these instruments were so complex that it was difficult for the models using traditional computer technology to analyze these portfolios effectively.

With the credit crisis in full swing in 2008, Stephen Weston joined JP Morgan’s London office, heading up a team devoted to making the company’s financial algorithms and models run more effectively. In what started out as a blue-sky technology project almost three years ago, Weston’s group has implemented a production-ready solution that speeds up the company’s CDO risk models by a factor of more than 130. “This, to us, is a step change,” said Weston, talking about the project during a presentation at Stanford University in May.

Execution time was the critical factor. Prior to the FPGA solution, JP Morgan’s main risk model for analyzing their CDO portfolio took 8 to 12 hours to complete — an overnight run requiring a cluster of thousands of x86 cores. If the model failed to execute correctly, there was no time to resubmit the application for that day. Worse yet, the credit risks and valuation are in constant flux. That snapshot of the previous day may no longer be useful. “It was a bit like driving your car on the freeway at 90 miles per hour by looking in the rear view mirror,” said Weston. “It could be fun, but there’s a high probability it could be a destructive activity.”

With the speedup, the same risk model took four minutes, with the FPGA processing eating up just 12 seconds of that. It’s not just that they could run the models faster though. The better performance allowed them to run multiple trading/risk scenarios throughout the day. So traders can evaluate more scenarios using different combinations of default criteria. In a nutshell, the time compression allowed JP Morgan to get a better handle on the risk profile of their CDO assets.

In general, porting legacy applications like these financial risk models to FPGAs is no small task. Programming them with low-level VHDL, the traditional programming language of FPGAs, is time-consuming, tedious, and generally unsuited for application developers. Weston knew that it would be a tough sell to convince the quants and management types at the company that this could be a viable solution for a production environment.

In fact, initially JP Morgan looked at GPUs for acceleration. They ported one of their models to the graphics architecture and were able to get a 14- to 15-fold performance boost. But they thought they could do even better with FPGAs. The problem was that it was going to take about 6 months for an initial port. That’s when they went to Maxeler and initiated a proof-of-concept engagement with them.

Maxeler is a London-based technology vendor specializing in FPGA acceleration for high performance computing applications. Unlike most FPGA vendors though, Maxeler offers a vertically integrated solution: hardware, high-level compilers (Java), runtime support, development tools, and FPGA porting expertise. As such, the company is able to meet application programmers on their own turf and help them navigate the eccentricities of FPGA software development. At least, that’s Maxeler’s pitch.

With JP Morgan, it all seemed to work. With Maxeler’s help, Weston’s group was able to port the time-critical, compute-intensive pieces of their C++ risk model (the Copula and Convoluter kernels, in particular) to the FPGA platform in about 3 months. The end result was something Weston felt was sustainable for their production environment.

Part of the effort to port to risk model involved redesigning the original C++ code, which was chock full of templates and objects. Those languages structures are great for application abstraction, said Weston, but they effectively kill parallelism, and thus performance. So the first phase of the code migrations was to remove all uses of classes, templates, and other C++ abstractions that got in the way of parallelization.

With the lower level code exposed, it became much simpler to tease out the parallelism that could be exploited by the FPGAs.  In this case, the flattened C++ source was ported to Java, which the Maxeler compiler is able to convert to VHDL.

Hardware-wise, the final target system is a 40-node hybrid HPC cluster from Maxeler. Each node houses eight Xeon cores hooked up to two Xilinx Virtex-5 (SX240T) FPGAs via PCIe links. Memory is split between the CPU (24GB) and the two FPGAs (12 GB each). Two terabytes of hard disk storage are hung off an Ethernet connection.

The advantage of the FPGA is that it is built for parallelism and allow the application to be intimately mapped onto the hardware. The devices are especially suited to applications that can exploit fine-grained parallelism and very deep pipelines. Unlike linear computations on fast CPUs (~2.6 GHz), parallel computation on slower FPGAs (~200 MHz) can yield many more calculations per watt. As Weston put it, “We went from computing in time to computing in space.”

Right now the company is in the final stages of the project to integrate it with the rest of their production infrastructure. They are also looking to move the technology into other areas of their business like FX trading and high frequency trading, and in some cases are seeing even better performance improvements. Their Monte Carlo model, for example, was able to realize a 260- to 280-fold speedup using FPGA acceleration.

Apparently JP Morgan feels bullish enough about the technology to warrant a direct investment. In March, they acquired a 20 percent stake in Maxeler for an undisclosed amount. Although the investment is probably just a rounding error for the financial giant, it signals company’s interest in making sure Maxeler’s intellectual assets are intact.

There is certainly plenty of room to expand the Maxeler footprint at JP Morgan. To run all aspects of their financial business, the company currently has 14 thousand applications running on 50 thousand servers spread across more than 42 datacenters worldwide. Only a fraction of those applications will be amenable to acceleration, but each one has the potential to raise the company’s bottom line.

“If we can compress the space, the time and the energy required to do these calculations, then it has hard business value for us,” noted Weston. “It gives us, ultimately, a competitive edge.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Career Notes: April 2020 Edition

April 2, 2020

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

By Mariana Iriarte

AMD Epyc CPUs Now on Bare Metal IBM Cloud Servers

April 1, 2020

AMD’s expanding presence in the datacenter and cloud computing markets took a step forward with today’s announcement that its 7nm 2nd Gen Epyc 7642 CPUs are now available on IBM Cloud bare metal servers. AMD, whose Read more…

By Doug Black

Supercomputer Testing Probes Viral Transmission in Airplanes

April 1, 2020

It might be a long time before the general public is flying again, but the question remains: how high-risk is air travel in terms of viral infection? In an article for the Texas Advanced Computing Center (TACC), Faith Si Read more…

By Staff report

ECP Milestone Report Details Progress and Directions

April 1, 2020

The Exascale Computing Project (ECP) milestone report issued last week presents a good snapshot of progress in preparing applications for exascale computing. There are roughly 30 ECP application development (AD) subproj Read more…

By John Russell

Russian Supercomputer Employed to Develop COVID-19 Treatment

March 31, 2020

From Summit to [email protected], global supercomputing is continuing to mobilize against the coronavirus pandemic by crunching massive problems like epidemiology, therapeutic development and vaccine development. The latest a Read more…

By Staff report

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

What’s New in HPC Research: Supersonic Jets, Skin Modeling, Astrophysics & More

March 31, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Conversation: ANL’s Rick Stevens on DoE’s AI for Science Project

March 23, 2020

With release of the Department of Energy’s AI for Science report in late February, the effort to build a national AI program, modeled loosely on the U.S. Exascale Initiative, enters a new phase. Project leaders have already had early discussions with Congress... Read more…

By John Russell

Servers Headed to Junkyard Find 2nd Life Fighting Cancer in Clusters

March 20, 2020

Ottawa-based charitable organization Cancer Computer is on a mission to stamp out cancer and other life-threatening diseases, including coronavirus, by putting Read more…

By Tiffany Trader

Kubernetes and HPC Applications in Hybrid Cloud Environments – Part II

March 19, 2020

With the rise of cloud services, CIOs are recognizing that applications, middleware, and infrastructure running in various compute environments need a common management and operating model. Maintaining different application and middleware stacks on-premises and in cloud environments, by possibly using different specialized infrastructure and application... Read more…

By Daniel Gruber,Burak Yenier and Wolfgang Gentzsch, UberCloud

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This