JP Morgan Buys Into FPGA Supercomputing

By Michael Feldman

July 13, 2011

One of the largest financial institutions in the world is using FPGA-based supercomputing for analyzing some of its largest and most complex credit derivative portfolios. JP Morgan, along with Maxeler Technologies, has built and deployed a state-of-the art HPC system capable of number-crunching the company’s collateralized debt obligation (CDO) portfolio in near real-time.

CDOs are instruments in which the credit assets are divided into different bundles or tranches, according to their relative risk of default. During the credit crisis of 2007-2008, CDO valuation tanked as the value of the underlying assets, mostly mortgages, fell off a cliff. Part of the problem was that many of the computer models didn’t assess the risk parameters of the various mortgages correctly. The less obvious aspect was that these instruments were so complex that it was difficult for the models using traditional computer technology to analyze these portfolios effectively.

With the credit crisis in full swing in 2008, Stephen Weston joined JP Morgan’s London office, heading up a team devoted to making the company’s financial algorithms and models run more effectively. In what started out as a blue-sky technology project almost three years ago, Weston’s group has implemented a production-ready solution that speeds up the company’s CDO risk models by a factor of more than 130. “This, to us, is a step change,” said Weston, talking about the project during a presentation at Stanford University in May.

Execution time was the critical factor. Prior to the FPGA solution, JP Morgan’s main risk model for analyzing their CDO portfolio took 8 to 12 hours to complete — an overnight run requiring a cluster of thousands of x86 cores. If the model failed to execute correctly, there was no time to resubmit the application for that day. Worse yet, the credit risks and valuation are in constant flux. That snapshot of the previous day may no longer be useful. “It was a bit like driving your car on the freeway at 90 miles per hour by looking in the rear view mirror,” said Weston. “It could be fun, but there’s a high probability it could be a destructive activity.”

With the speedup, the same risk model took four minutes, with the FPGA processing eating up just 12 seconds of that. It’s not just that they could run the models faster though. The better performance allowed them to run multiple trading/risk scenarios throughout the day. So traders can evaluate more scenarios using different combinations of default criteria. In a nutshell, the time compression allowed JP Morgan to get a better handle on the risk profile of their CDO assets.

In general, porting legacy applications like these financial risk models to FPGAs is no small task. Programming them with low-level VHDL, the traditional programming language of FPGAs, is time-consuming, tedious, and generally unsuited for application developers. Weston knew that it would be a tough sell to convince the quants and management types at the company that this could be a viable solution for a production environment.

In fact, initially JP Morgan looked at GPUs for acceleration. They ported one of their models to the graphics architecture and were able to get a 14- to 15-fold performance boost. But they thought they could do even better with FPGAs. The problem was that it was going to take about 6 months for an initial port. That’s when they went to Maxeler and initiated a proof-of-concept engagement with them.

Maxeler is a London-based technology vendor specializing in FPGA acceleration for high performance computing applications. Unlike most FPGA vendors though, Maxeler offers a vertically integrated solution: hardware, high-level compilers (Java), runtime support, development tools, and FPGA porting expertise. As such, the company is able to meet application programmers on their own turf and help them navigate the eccentricities of FPGA software development. At least, that’s Maxeler’s pitch.

With JP Morgan, it all seemed to work. With Maxeler’s help, Weston’s group was able to port the time-critical, compute-intensive pieces of their C++ risk model (the Copula and Convoluter kernels, in particular) to the FPGA platform in about 3 months. The end result was something Weston felt was sustainable for their production environment.

Part of the effort to port to risk model involved redesigning the original C++ code, which was chock full of templates and objects. Those languages structures are great for application abstraction, said Weston, but they effectively kill parallelism, and thus performance. So the first phase of the code migrations was to remove all uses of classes, templates, and other C++ abstractions that got in the way of parallelization.

With the lower level code exposed, it became much simpler to tease out the parallelism that could be exploited by the FPGAs.  In this case, the flattened C++ source was ported to Java, which the Maxeler compiler is able to convert to VHDL.

Hardware-wise, the final target system is a 40-node hybrid HPC cluster from Maxeler. Each node houses eight Xeon cores hooked up to two Xilinx Virtex-5 (SX240T) FPGAs via PCIe links. Memory is split between the CPU (24GB) and the two FPGAs (12 GB each). Two terabytes of hard disk storage are hung off an Ethernet connection.

The advantage of the FPGA is that it is built for parallelism and allow the application to be intimately mapped onto the hardware. The devices are especially suited to applications that can exploit fine-grained parallelism and very deep pipelines. Unlike linear computations on fast CPUs (~2.6 GHz), parallel computation on slower FPGAs (~200 MHz) can yield many more calculations per watt. As Weston put it, “We went from computing in time to computing in space.”

Right now the company is in the final stages of the project to integrate it with the rest of their production infrastructure. They are also looking to move the technology into other areas of their business like FX trading and high frequency trading, and in some cases are seeing even better performance improvements. Their Monte Carlo model, for example, was able to realize a 260- to 280-fold speedup using FPGA acceleration.

Apparently JP Morgan feels bullish enough about the technology to warrant a direct investment. In March, they acquired a 20 percent stake in Maxeler for an undisclosed amount. Although the investment is probably just a rounding error for the financial giant, it signals company’s interest in making sure Maxeler’s intellectual assets are intact.

There is certainly plenty of room to expand the Maxeler footprint at JP Morgan. To run all aspects of their financial business, the company currently has 14 thousand applications running on 50 thousand servers spread across more than 42 datacenters worldwide. Only a fraction of those applications will be amenable to acceleration, but each one has the potential to raise the company’s bottom line.

“If we can compress the space, the time and the energy required to do these calculations, then it has hard business value for us,” noted Weston. “It gives us, ultimately, a competitive edge.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This