JP Morgan Buys Into FPGA Supercomputing

By Michael Feldman

July 13, 2011

One of the largest financial institutions in the world is using FPGA-based supercomputing for analyzing some of its largest and most complex credit derivative portfolios. JP Morgan, along with Maxeler Technologies, has built and deployed a state-of-the art HPC system capable of number-crunching the company’s collateralized debt obligation (CDO) portfolio in near real-time.

CDOs are instruments in which the credit assets are divided into different bundles or tranches, according to their relative risk of default. During the credit crisis of 2007-2008, CDO valuation tanked as the value of the underlying assets, mostly mortgages, fell off a cliff. Part of the problem was that many of the computer models didn’t assess the risk parameters of the various mortgages correctly. The less obvious aspect was that these instruments were so complex that it was difficult for the models using traditional computer technology to analyze these portfolios effectively.

With the credit crisis in full swing in 2008, Stephen Weston joined JP Morgan’s London office, heading up a team devoted to making the company’s financial algorithms and models run more effectively. In what started out as a blue-sky technology project almost three years ago, Weston’s group has implemented a production-ready solution that speeds up the company’s CDO risk models by a factor of more than 130. “This, to us, is a step change,” said Weston, talking about the project during a presentation at Stanford University in May.

Execution time was the critical factor. Prior to the FPGA solution, JP Morgan’s main risk model for analyzing their CDO portfolio took 8 to 12 hours to complete — an overnight run requiring a cluster of thousands of x86 cores. If the model failed to execute correctly, there was no time to resubmit the application for that day. Worse yet, the credit risks and valuation are in constant flux. That snapshot of the previous day may no longer be useful. “It was a bit like driving your car on the freeway at 90 miles per hour by looking in the rear view mirror,” said Weston. “It could be fun, but there’s a high probability it could be a destructive activity.”

With the speedup, the same risk model took four minutes, with the FPGA processing eating up just 12 seconds of that. It’s not just that they could run the models faster though. The better performance allowed them to run multiple trading/risk scenarios throughout the day. So traders can evaluate more scenarios using different combinations of default criteria. In a nutshell, the time compression allowed JP Morgan to get a better handle on the risk profile of their CDO assets.

In general, porting legacy applications like these financial risk models to FPGAs is no small task. Programming them with low-level VHDL, the traditional programming language of FPGAs, is time-consuming, tedious, and generally unsuited for application developers. Weston knew that it would be a tough sell to convince the quants and management types at the company that this could be a viable solution for a production environment.

In fact, initially JP Morgan looked at GPUs for acceleration. They ported one of their models to the graphics architecture and were able to get a 14- to 15-fold performance boost. But they thought they could do even better with FPGAs. The problem was that it was going to take about 6 months for an initial port. That’s when they went to Maxeler and initiated a proof-of-concept engagement with them.

Maxeler is a London-based technology vendor specializing in FPGA acceleration for high performance computing applications. Unlike most FPGA vendors though, Maxeler offers a vertically integrated solution: hardware, high-level compilers (Java), runtime support, development tools, and FPGA porting expertise. As such, the company is able to meet application programmers on their own turf and help them navigate the eccentricities of FPGA software development. At least, that’s Maxeler’s pitch.

With JP Morgan, it all seemed to work. With Maxeler’s help, Weston’s group was able to port the time-critical, compute-intensive pieces of their C++ risk model (the Copula and Convoluter kernels, in particular) to the FPGA platform in about 3 months. The end result was something Weston felt was sustainable for their production environment.

Part of the effort to port to risk model involved redesigning the original C++ code, which was chock full of templates and objects. Those languages structures are great for application abstraction, said Weston, but they effectively kill parallelism, and thus performance. So the first phase of the code migrations was to remove all uses of classes, templates, and other C++ abstractions that got in the way of parallelization.

With the lower level code exposed, it became much simpler to tease out the parallelism that could be exploited by the FPGAs.  In this case, the flattened C++ source was ported to Java, which the Maxeler compiler is able to convert to VHDL.

Hardware-wise, the final target system is a 40-node hybrid HPC cluster from Maxeler. Each node houses eight Xeon cores hooked up to two Xilinx Virtex-5 (SX240T) FPGAs via PCIe links. Memory is split between the CPU (24GB) and the two FPGAs (12 GB each). Two terabytes of hard disk storage are hung off an Ethernet connection.

The advantage of the FPGA is that it is built for parallelism and allow the application to be intimately mapped onto the hardware. The devices are especially suited to applications that can exploit fine-grained parallelism and very deep pipelines. Unlike linear computations on fast CPUs (~2.6 GHz), parallel computation on slower FPGAs (~200 MHz) can yield many more calculations per watt. As Weston put it, “We went from computing in time to computing in space.”

Right now the company is in the final stages of the project to integrate it with the rest of their production infrastructure. They are also looking to move the technology into other areas of their business like FX trading and high frequency trading, and in some cases are seeing even better performance improvements. Their Monte Carlo model, for example, was able to realize a 260- to 280-fold speedup using FPGA acceleration.

Apparently JP Morgan feels bullish enough about the technology to warrant a direct investment. In March, they acquired a 20 percent stake in Maxeler for an undisclosed amount. Although the investment is probably just a rounding error for the financial giant, it signals company’s interest in making sure Maxeler’s intellectual assets are intact.

There is certainly plenty of room to expand the Maxeler footprint at JP Morgan. To run all aspects of their financial business, the company currently has 14 thousand applications running on 50 thousand servers spread across more than 42 datacenters worldwide. Only a fraction of those applications will be amenable to acceleration, but each one has the potential to raise the company’s bottom line.

“If we can compress the space, the time and the energy required to do these calculations, then it has hard business value for us,” noted Weston. “It gives us, ultimately, a competitive edge.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

STEM-Trekker Badisa Mosesane Attends CERN Summer Student Program

June 27, 2017

Badisa Mosesane, an undergraduate scholar who studies computer science at the University of Botswana in Gaborone, recently joined other students from developing nations around the world in Geneva, Switzerland to particip Read more…

By Elizabeth Leake, STEM-Trek

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This