JP Morgan Buys Into FPGA Supercomputing

By Michael Feldman

July 13, 2011

One of the largest financial institutions in the world is using FPGA-based supercomputing for analyzing some of its largest and most complex credit derivative portfolios. JP Morgan, along with Maxeler Technologies, has built and deployed a state-of-the art HPC system capable of number-crunching the company’s collateralized debt obligation (CDO) portfolio in near real-time.

CDOs are instruments in which the credit assets are divided into different bundles or tranches, according to their relative risk of default. During the credit crisis of 2007-2008, CDO valuation tanked as the value of the underlying assets, mostly mortgages, fell off a cliff. Part of the problem was that many of the computer models didn’t assess the risk parameters of the various mortgages correctly. The less obvious aspect was that these instruments were so complex that it was difficult for the models using traditional computer technology to analyze these portfolios effectively.

With the credit crisis in full swing in 2008, Stephen Weston joined JP Morgan’s London office, heading up a team devoted to making the company’s financial algorithms and models run more effectively. In what started out as a blue-sky technology project almost three years ago, Weston’s group has implemented a production-ready solution that speeds up the company’s CDO risk models by a factor of more than 130. “This, to us, is a step change,” said Weston, talking about the project during a presentation at Stanford University in May.

Execution time was the critical factor. Prior to the FPGA solution, JP Morgan’s main risk model for analyzing their CDO portfolio took 8 to 12 hours to complete — an overnight run requiring a cluster of thousands of x86 cores. If the model failed to execute correctly, there was no time to resubmit the application for that day. Worse yet, the credit risks and valuation are in constant flux. That snapshot of the previous day may no longer be useful. “It was a bit like driving your car on the freeway at 90 miles per hour by looking in the rear view mirror,” said Weston. “It could be fun, but there’s a high probability it could be a destructive activity.”

With the speedup, the same risk model took four minutes, with the FPGA processing eating up just 12 seconds of that. It’s not just that they could run the models faster though. The better performance allowed them to run multiple trading/risk scenarios throughout the day. So traders can evaluate more scenarios using different combinations of default criteria. In a nutshell, the time compression allowed JP Morgan to get a better handle on the risk profile of their CDO assets.

In general, porting legacy applications like these financial risk models to FPGAs is no small task. Programming them with low-level VHDL, the traditional programming language of FPGAs, is time-consuming, tedious, and generally unsuited for application developers. Weston knew that it would be a tough sell to convince the quants and management types at the company that this could be a viable solution for a production environment.

In fact, initially JP Morgan looked at GPUs for acceleration. They ported one of their models to the graphics architecture and were able to get a 14- to 15-fold performance boost. But they thought they could do even better with FPGAs. The problem was that it was going to take about 6 months for an initial port. That’s when they went to Maxeler and initiated a proof-of-concept engagement with them.

Maxeler is a London-based technology vendor specializing in FPGA acceleration for high performance computing applications. Unlike most FPGA vendors though, Maxeler offers a vertically integrated solution: hardware, high-level compilers (Java), runtime support, development tools, and FPGA porting expertise. As such, the company is able to meet application programmers on their own turf and help them navigate the eccentricities of FPGA software development. At least, that’s Maxeler’s pitch.

With JP Morgan, it all seemed to work. With Maxeler’s help, Weston’s group was able to port the time-critical, compute-intensive pieces of their C++ risk model (the Copula and Convoluter kernels, in particular) to the FPGA platform in about 3 months. The end result was something Weston felt was sustainable for their production environment.

Part of the effort to port to risk model involved redesigning the original C++ code, which was chock full of templates and objects. Those languages structures are great for application abstraction, said Weston, but they effectively kill parallelism, and thus performance. So the first phase of the code migrations was to remove all uses of classes, templates, and other C++ abstractions that got in the way of parallelization.

With the lower level code exposed, it became much simpler to tease out the parallelism that could be exploited by the FPGAs.  In this case, the flattened C++ source was ported to Java, which the Maxeler compiler is able to convert to VHDL.

Hardware-wise, the final target system is a 40-node hybrid HPC cluster from Maxeler. Each node houses eight Xeon cores hooked up to two Xilinx Virtex-5 (SX240T) FPGAs via PCIe links. Memory is split between the CPU (24GB) and the two FPGAs (12 GB each). Two terabytes of hard disk storage are hung off an Ethernet connection.

The advantage of the FPGA is that it is built for parallelism and allow the application to be intimately mapped onto the hardware. The devices are especially suited to applications that can exploit fine-grained parallelism and very deep pipelines. Unlike linear computations on fast CPUs (~2.6 GHz), parallel computation on slower FPGAs (~200 MHz) can yield many more calculations per watt. As Weston put it, “We went from computing in time to computing in space.”

Right now the company is in the final stages of the project to integrate it with the rest of their production infrastructure. They are also looking to move the technology into other areas of their business like FX trading and high frequency trading, and in some cases are seeing even better performance improvements. Their Monte Carlo model, for example, was able to realize a 260- to 280-fold speedup using FPGA acceleration.

Apparently JP Morgan feels bullish enough about the technology to warrant a direct investment. In March, they acquired a 20 percent stake in Maxeler for an undisclosed amount. Although the investment is probably just a rounding error for the financial giant, it signals company’s interest in making sure Maxeler’s intellectual assets are intact.

There is certainly plenty of room to expand the Maxeler footprint at JP Morgan. To run all aspects of their financial business, the company currently has 14 thousand applications running on 50 thousand servers spread across more than 42 datacenters worldwide. Only a fraction of those applications will be amenable to acceleration, but each one has the potential to raise the company’s bottom line.

“If we can compress the space, the time and the energy required to do these calculations, then it has hard business value for us,” noted Weston. “It gives us, ultimately, a competitive edge.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than ever, the network plays a crucial role. While fast, perform Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup Read more…

By Warren Froelich

WCRP’s New Strategic Plan for Climate Research Highlights the Importance of HPC

July 19, 2018

As climate modeling increasingly leverages exascale computing and researchers warn of an impending computing gap in climate research, the World Climate Research Programme (WCRP) is developing its new Strategic Plan – and high-performance computing is slated to play a critical role. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

U.S. Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software Technology (ST) Capability Assessment Report detailing progress so far. Read more…

By John Russell

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of perso Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This