JP Morgan Buys Into FPGA Supercomputing

By Michael Feldman

July 13, 2011

One of the largest financial institutions in the world is using FPGA-based supercomputing for analyzing some of its largest and most complex credit derivative portfolios. JP Morgan, along with Maxeler Technologies, has built and deployed a state-of-the art HPC system capable of number-crunching the company’s collateralized debt obligation (CDO) portfolio in near real-time.

CDOs are instruments in which the credit assets are divided into different bundles or tranches, according to their relative risk of default. During the credit crisis of 2007-2008, CDO valuation tanked as the value of the underlying assets, mostly mortgages, fell off a cliff. Part of the problem was that many of the computer models didn’t assess the risk parameters of the various mortgages correctly. The less obvious aspect was that these instruments were so complex that it was difficult for the models using traditional computer technology to analyze these portfolios effectively.

With the credit crisis in full swing in 2008, Stephen Weston joined JP Morgan’s London office, heading up a team devoted to making the company’s financial algorithms and models run more effectively. In what started out as a blue-sky technology project almost three years ago, Weston’s group has implemented a production-ready solution that speeds up the company’s CDO risk models by a factor of more than 130. “This, to us, is a step change,” said Weston, talking about the project during a presentation at Stanford University in May.

Execution time was the critical factor. Prior to the FPGA solution, JP Morgan’s main risk model for analyzing their CDO portfolio took 8 to 12 hours to complete — an overnight run requiring a cluster of thousands of x86 cores. If the model failed to execute correctly, there was no time to resubmit the application for that day. Worse yet, the credit risks and valuation are in constant flux. That snapshot of the previous day may no longer be useful. “It was a bit like driving your car on the freeway at 90 miles per hour by looking in the rear view mirror,” said Weston. “It could be fun, but there’s a high probability it could be a destructive activity.”

With the speedup, the same risk model took four minutes, with the FPGA processing eating up just 12 seconds of that. It’s not just that they could run the models faster though. The better performance allowed them to run multiple trading/risk scenarios throughout the day. So traders can evaluate more scenarios using different combinations of default criteria. In a nutshell, the time compression allowed JP Morgan to get a better handle on the risk profile of their CDO assets.

In general, porting legacy applications like these financial risk models to FPGAs is no small task. Programming them with low-level VHDL, the traditional programming language of FPGAs, is time-consuming, tedious, and generally unsuited for application developers. Weston knew that it would be a tough sell to convince the quants and management types at the company that this could be a viable solution for a production environment.

In fact, initially JP Morgan looked at GPUs for acceleration. They ported one of their models to the graphics architecture and were able to get a 14- to 15-fold performance boost. But they thought they could do even better with FPGAs. The problem was that it was going to take about 6 months for an initial port. That’s when they went to Maxeler and initiated a proof-of-concept engagement with them.

Maxeler is a London-based technology vendor specializing in FPGA acceleration for high performance computing applications. Unlike most FPGA vendors though, Maxeler offers a vertically integrated solution: hardware, high-level compilers (Java), runtime support, development tools, and FPGA porting expertise. As such, the company is able to meet application programmers on their own turf and help them navigate the eccentricities of FPGA software development. At least, that’s Maxeler’s pitch.

With JP Morgan, it all seemed to work. With Maxeler’s help, Weston’s group was able to port the time-critical, compute-intensive pieces of their C++ risk model (the Copula and Convoluter kernels, in particular) to the FPGA platform in about 3 months. The end result was something Weston felt was sustainable for their production environment.

Part of the effort to port to risk model involved redesigning the original C++ code, which was chock full of templates and objects. Those languages structures are great for application abstraction, said Weston, but they effectively kill parallelism, and thus performance. So the first phase of the code migrations was to remove all uses of classes, templates, and other C++ abstractions that got in the way of parallelization.

With the lower level code exposed, it became much simpler to tease out the parallelism that could be exploited by the FPGAs.  In this case, the flattened C++ source was ported to Java, which the Maxeler compiler is able to convert to VHDL.

Hardware-wise, the final target system is a 40-node hybrid HPC cluster from Maxeler. Each node houses eight Xeon cores hooked up to two Xilinx Virtex-5 (SX240T) FPGAs via PCIe links. Memory is split between the CPU (24GB) and the two FPGAs (12 GB each). Two terabytes of hard disk storage are hung off an Ethernet connection.

The advantage of the FPGA is that it is built for parallelism and allow the application to be intimately mapped onto the hardware. The devices are especially suited to applications that can exploit fine-grained parallelism and very deep pipelines. Unlike linear computations on fast CPUs (~2.6 GHz), parallel computation on slower FPGAs (~200 MHz) can yield many more calculations per watt. As Weston put it, “We went from computing in time to computing in space.”

Right now the company is in the final stages of the project to integrate it with the rest of their production infrastructure. They are also looking to move the technology into other areas of their business like FX trading and high frequency trading, and in some cases are seeing even better performance improvements. Their Monte Carlo model, for example, was able to realize a 260- to 280-fold speedup using FPGA acceleration.

Apparently JP Morgan feels bullish enough about the technology to warrant a direct investment. In March, they acquired a 20 percent stake in Maxeler for an undisclosed amount. Although the investment is probably just a rounding error for the financial giant, it signals company’s interest in making sure Maxeler’s intellectual assets are intact.

There is certainly plenty of room to expand the Maxeler footprint at JP Morgan. To run all aspects of their financial business, the company currently has 14 thousand applications running on 50 thousand servers spread across more than 42 datacenters worldwide. Only a fraction of those applications will be amenable to acceleration, but each one has the potential to raise the company’s bottom line.

“If we can compress the space, the time and the energy required to do these calculations, then it has hard business value for us,” noted Weston. “It gives us, ultimately, a competitive edge.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cerebras Doubles AI Performance with Second-Gen 7nm Wafer Scale Engine

April 20, 2021

Nearly two years since its massive 1.2 trillion transistor Wafer Scale Engine chip debuted at Hot Chips, Cerebras Systems is announcing its second-generation technology (WSE-2), which its says packs twice the performance Read more…

The New Scalability

April 20, 2021

HPC is all about scalability. The most powerful systems. The biggest data sets. The most cores, the most bytes, the most flops, the most bandwidth. HPC scales! Notwithstanding a few recurring arguments over the last twenty years about scaling up versus scaling out, the definition of scalability... Read more…

Supercomputer-Powered Climate Model Makes Startling Sea Level Rise Prediction

April 19, 2021

The climate science community is tasked with striking a difficult balance: inspiring precisely the amount of alarm commensurate to the climate crisis. Make estimates that are too conservative, and the public might not re Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the large research community it supports, it also sought to optimize Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

AWS Solution Channel

Research computing with RONIN on AWS

To allow more visibility into and management of Amazon Web Services (AWS) resources and expenses and minimize the cloud skills training required to operate these resources, AWS Partner RONIN created the RONIN research computing platform. Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

Cerebras Doubles AI Performance with Second-Gen 7nm Wafer Scale Engine

April 20, 2021

Nearly two years since its massive 1.2 trillion transistor Wafer Scale Engine chip debuted at Hot Chips, Cerebras Systems is announcing its second-generation te Read more…

The New Scalability

April 20, 2021

HPC is all about scalability. The most powerful systems. The biggest data sets. The most cores, the most bytes, the most flops, the most bandwidth. HPC scales! Notwithstanding a few recurring arguments over the last twenty years about scaling up versus scaling out, the definition of scalability... Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the larg Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire