GPU Computing Wades Into the Mainstream

By Michael Feldman

July 14, 2011

The idea that the most successful technologies become invisible doesn’t yet apply to GPU computing, but it’s getting there. This week there were a handful of major HPC system announcements based on GPU-equipped platforms, but you wouldn’t have known that from the headlines. No longer the interloper in high performance computing, GPUs are beginning to fade into the background, just like every other mainstream HPC technology.

On Monday, Bright Computing announced that Drexel University has installed a large cluster to be used for its astrophysics and molecular dynamics research. In this case large means 176 peak teraflops — not bad for a university with less than 25 thousand students. Actually the system’s peak performance is even larger than that. The 176 teraflops are attributed to 68K NVIDIA GPU cores in the machine. That works out to about 133 of the latest 512-core Tesla GPUs at 1.33 double-precision teraflops per processor. The CPUs in the system were even more invisible though; they weren’t even mentioned.

Bright Computing’s notable contribution here is its support for GPUs — CUDA 4.0 specifically — in its cluster management offering. Today, though, all cluster and workload managers support GPU computing to one extent or another. They have to, given the increasing level of penetration of GPUs in HPC clusters. The idea is to help automate the management of the GPU resources in the cluster so that the system admins don’t have to treat these CPU-GPU machines like exotic animals.

On Wednesday, SGI announced Swinburne University of Technology in Australia is buying a Rackable C3108 /Altix UV combo system that will deliver 130 teraflops. Like the Drexel super, the Swinburne machine will be used for astrophysics computations. And, if you weren’t paying close attention, you might not have noticed that the system will incorporate NVIDIA GPUs, in this case, a combination of Tesla C2070 and M2090 GPUs. Although no specifics were offered about the number of Tesla parts employed, it’s a good bet that most of the FLOPS are from the GPU side.

Meanwhile the gang at T-Platforms was talking up the Graph 500 performance of their Lomonosov super, installed at Moscow State University. Although Lomonosov was ranked third on the list, it set a new performance record, hitting 43.5 GE/s (billion edges processed per second). The metric is an attempt to measure the ability of computers to perform data-intensive operations, rather than the TOP500 Linpack benchmark, which measures a computer’s floating-point computational prowess.

Lomonosov was recently upgraded to 1.3 petaflops, thanks to — you guessed it — NVIDIA GPUs. In this case, the upgrade added 863 GPU teraflops (courtesy of T-Platforms’ NVIDIA Tesla X2070-equipped TB2-TL blades) to Lomonosov’s existing 510 teraflops. It is not clear, though, whether the GPU parts were used to achieve the record-breaking Graph 500 result.

Jumping now to China, there was the news that the Tianhe-1 supercomputer has gone into operation at the Changsha Supercomputer Center. It looks like the story originated with China Central Television (CCTV) and was subsequently picked up by the IDG News Service. The system, which is reported to reach a peak performance of 1.1 petaflops, apparently went into production last weekend.  According to the report, by October the system will be upgraded to 3 petaflops.

Tianhe-1 has an odd history. It was the world’s first “petascale” supercomputer that employed GPUs, in this case, AMD/ATI Radeon ATI Radeon HD 4870 2 processors. It debuted in the November 2009 TOP500 rankings as a 1.2 (peak) petaflop machine, garnering itself the number five position on the list. By November 2010, it had disappeared from TOP500, replaced by the now-famous Tianhe-1A, a much larger GPU-equipped Chinese super that delivered 4.7 peak petaflops using NVIDIA parts.

What happened to the Tianhe-1 since last November is a mystery. But given the peak petaflops has been shaved by 100 teraflops, I suspect the configuration was modified. Whether that means different GPUs, less GPUs, or no GPUs remains to be seen.  If you’re interested in the IDG/CCTV report, take a look at the YouTube video.

By the way, even though these CPU-GPU machines are becoming more commonplace, I’ve noticed that the naming convention for them has not quite settled. Some are calling them hybrid systems, while others are referring to them as heterogeneous machines. My preference is the latter, since hybrid implies a mixing of DNA, which I take to mean the processor’s transistors. Since the GPUs and CPUs are still discrete entities, heterogeneous seems the better nomenclature here.

Even the AMD Fusion chips and future Project Denver processors from NVIDIA, which mix CPU and GPU components on-chip, still seem more heterogeneous than hybrid to me. But I have a feeling when GPUs are integrated to this level and, more importantly, when applications are oblivious to the mix of underlying computational units, we’ll just be calling them processors again. That’s what happens when technology becomes invisible.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

And So It Begins…Again – The FY19 Exascale Budget Rollout (and things look good)

February 23, 2018

On February 12, 2018, the Trump administration submitted its Fiscal Year 2019 (FY-19) budget to Congress. The good news for the U.S. exascale program is that the numbers look very good and the support appears to be stron Read more…

By Alex R. Larzelere

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with partner Leibniz Supercomputing Center (LRZ) in Germany. The ser Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and processing architectures that, if not optimized, will hamstrin Read more…

By Doug Black

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

Do Cryptocurrencies Have a Part to Play in HPC?

February 22, 2018

It’s easy to be distracted by news from the US, China, and now the EU on the state of various exascale projects, but behind the vinyl-wrapped cabinets and well-groomed sales execs are an army of Excel-wielding PMO and Read more…

By Chris Downing

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and pr Read more…

By Doug Black

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This