GPU Computing Wades Into the Mainstream

By Michael Feldman

July 14, 2011

The idea that the most successful technologies become invisible doesn’t yet apply to GPU computing, but it’s getting there. This week there were a handful of major HPC system announcements based on GPU-equipped platforms, but you wouldn’t have known that from the headlines. No longer the interloper in high performance computing, GPUs are beginning to fade into the background, just like every other mainstream HPC technology.

On Monday, Bright Computing announced that Drexel University has installed a large cluster to be used for its astrophysics and molecular dynamics research. In this case large means 176 peak teraflops — not bad for a university with less than 25 thousand students. Actually the system’s peak performance is even larger than that. The 176 teraflops are attributed to 68K NVIDIA GPU cores in the machine. That works out to about 133 of the latest 512-core Tesla GPUs at 1.33 double-precision teraflops per processor. The CPUs in the system were even more invisible though; they weren’t even mentioned.

Bright Computing’s notable contribution here is its support for GPUs — CUDA 4.0 specifically — in its cluster management offering. Today, though, all cluster and workload managers support GPU computing to one extent or another. They have to, given the increasing level of penetration of GPUs in HPC clusters. The idea is to help automate the management of the GPU resources in the cluster so that the system admins don’t have to treat these CPU-GPU machines like exotic animals.

On Wednesday, SGI announced Swinburne University of Technology in Australia is buying a Rackable C3108 /Altix UV combo system that will deliver 130 teraflops. Like the Drexel super, the Swinburne machine will be used for astrophysics computations. And, if you weren’t paying close attention, you might not have noticed that the system will incorporate NVIDIA GPUs, in this case, a combination of Tesla C2070 and M2090 GPUs. Although no specifics were offered about the number of Tesla parts employed, it’s a good bet that most of the FLOPS are from the GPU side.

Meanwhile the gang at T-Platforms was talking up the Graph 500 performance of their Lomonosov super, installed at Moscow State University. Although Lomonosov was ranked third on the list, it set a new performance record, hitting 43.5 GE/s (billion edges processed per second). The metric is an attempt to measure the ability of computers to perform data-intensive operations, rather than the TOP500 Linpack benchmark, which measures a computer’s floating-point computational prowess.

Lomonosov was recently upgraded to 1.3 petaflops, thanks to — you guessed it — NVIDIA GPUs. In this case, the upgrade added 863 GPU teraflops (courtesy of T-Platforms’ NVIDIA Tesla X2070-equipped TB2-TL blades) to Lomonosov’s existing 510 teraflops. It is not clear, though, whether the GPU parts were used to achieve the record-breaking Graph 500 result.

Jumping now to China, there was the news that the Tianhe-1 supercomputer has gone into operation at the Changsha Supercomputer Center. It looks like the story originated with China Central Television (CCTV) and was subsequently picked up by the IDG News Service. The system, which is reported to reach a peak performance of 1.1 petaflops, apparently went into production last weekend.  According to the report, by October the system will be upgraded to 3 petaflops.

Tianhe-1 has an odd history. It was the world’s first “petascale” supercomputer that employed GPUs, in this case, AMD/ATI Radeon ATI Radeon HD 4870 2 processors. It debuted in the November 2009 TOP500 rankings as a 1.2 (peak) petaflop machine, garnering itself the number five position on the list. By November 2010, it had disappeared from TOP500, replaced by the now-famous Tianhe-1A, a much larger GPU-equipped Chinese super that delivered 4.7 peak petaflops using NVIDIA parts.

What happened to the Tianhe-1 since last November is a mystery. But given the peak petaflops has been shaved by 100 teraflops, I suspect the configuration was modified. Whether that means different GPUs, less GPUs, or no GPUs remains to be seen.  If you’re interested in the IDG/CCTV report, take a look at the YouTube video.

By the way, even though these CPU-GPU machines are becoming more commonplace, I’ve noticed that the naming convention for them has not quite settled. Some are calling them hybrid systems, while others are referring to them as heterogeneous machines. My preference is the latter, since hybrid implies a mixing of DNA, which I take to mean the processor’s transistors. Since the GPUs and CPUs are still discrete entities, heterogeneous seems the better nomenclature here.

Even the AMD Fusion chips and future Project Denver processors from NVIDIA, which mix CPU and GPU components on-chip, still seem more heterogeneous than hybrid to me. But I have a feeling when GPUs are integrated to this level and, more importantly, when applications are oblivious to the mix of underlying computational units, we’ll just be calling them processors again. That’s what happens when technology becomes invisible.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This