Microsoft Brings MapReduce into the Fold

By Nicole Hemsoth

July 18, 2011

This week Microsoft unveiled Project Daytona, which is a community technical preview release of their own MapReduce framework designed and built for their own Windows Azure cloud offering.

Microsoft claims that their implementation of an interative MapReduce runtime on their cloud will allow researchers to capture the scalability of the cloud without sacrificing the performance and compute horsepower needed to analyze large data sets. In their statement today, Microsoft said that Project Daytona will allow researchers to “analyze data sets on gigabytes or terabytes of data and run large-scale machine learning algorithms on dozens or hundreds of compute cores.”

According to softies behind Project Daytona, one of the most persistent complaints they received from researchers was that they needed a data analysis and processing framework robust enough to handle the increasingly large data sets they were contending with. Like those in the enterprise space, these researchers were finding it difficult to find meaning in their massive pools of data using simplified tools. As many who are familiar with the MapReduce framework, however, using it to create parallelized code capable of uncovering hidden value in data isn’t light work—it took expertise that many domain specialists don’t possess.

Arguably, one of Microsoft’s strong suits has historically been their ability to take programmatic headaches, condense them behind a simple user interface and let the experts handle the drama. This  is what they are hoping to do with Project Daytona on the software level while letting a bevy of instructional materials, sample code, and easy interfaces make the rest a bit more palatable for the average research group.

In terms of the key benefits, Microsoft says that their strong point with Project Daytona is that it was purpose-built for the cloud. For their cloud. The virtual machines, they say, “irrespective of infrastructure as a service (IaaS) or platform as a service (PaaS), introduce unique challenges and architectural tradeoffs for implementing a scale-out computation framework such as Project Daytona. Out of these, the most crucial are network communications between virtual machines (VMs) and the non-persistent disks of VMs. We have tuned the scheduling, network communications scheduling, and the fault tolerance logic of Project Daytona to suit this situation.”

Additionally, they point to the fact that this has been designed specifically with cloud storage services in mind via their defined stream-based data access layer for cloud data sources (which only include Windows Azure blob storage, although they claim more will be on the way at an undefined moment in the future). This means they will be able to partition data dynamically while supporting parallel reads, leaving the data inside the memory or in local non-persistent disks with backups relegated to the blobs. This means Project Daytona can gobble data without the overhead hit and overcome failures without a crisis, relying on their  Azure storage services and without the need for a distributed file system.

If you shed the messy data movement issues, the scalability of the cloud for projects that are data-instensive can be quite a selling point. Instant provisioning makes the process seamless and users can define, shut down and otherwise manipulate virtual machines as needed. As Microsoft says in its closing message about the release, “Project Daytona lets you focus on your data exploration; without having to worry about acquiring compute capacity or time-consuming hardware setup and management.”

While Roger Barga and his team at the eXtreme Computing Group at Microsoft Research plan to fine-tune the offering in coming months, in many ways the release comes ready-made for new developers to climb on board without extensive parallel programming knowledge—always a spot of welcome news for scientific researchers who want to trade in their system admin skills for more time to get back to their focused work.

The project was borne out of the eXtreme Computing Group’s Cloud Research Engagement Program, which is a broad initiative that Microsoft hopes will “change the paradigm for scholarly and scientific research by extending the power of the computer into the cloud.” The group behind the effort is working on next generation cloud computing technologies in conjunction with the researchers who will be making the most use of such developments.

Other noteworthy projects that have spun out of their cloud program include the European research effort, VENUS-C Cloud Infrastructure, which is being tested and deployed on Azure with the promise of bringing new applications for bioinformatics, engineering, earth sciences and healthcare, among others, to a new class of users via the cloud.

Microsoft is blending what appears to be a dwindling presence in traditional HPC into its cloud offering with a host of announcements this year that cater to the HPC crowd yet provide the cloud as the backbone of the research. Even a quick glance down this list of initiatives that are research-oriented should give you an idea that Microsoft is serious about making its Azure the cloud of choice for technical and scientific computing.

On that note, the effort is in many ways geared toward appeasing the two key words that are the tip of every tech person’s tongue these days; big data and cloud computing. While Project Daytona is something of a latecomer to the big data cloud party given the Hadoop/MapReduce play Amazon made earlier this year, it is nonetheless unique in terms of its focus. Instead of appealing directly to the enterprise data mining professional, this community release offering is set apart by its emphasis on the researcher or scientist.

This is not to say that MapReduce on Microsoft’s cloud couldn’t aim to please the commercial data pro—it’s more a matter of messaging. Only time will tell what kind of adoption this will get once it gets off the ground and the bugs exterminated, of course, but it’s noteworthy in its target market focus.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Shares Recipe to Accelerate AI Cloud Adoption

May 29, 2017

In March, Nvidia revealed blueprints for a new open source Tesla GPU-based accelerator – HGX-1 – developed for clouds with Microsoft under its Project Olym Read more…

By Tiffany Trader

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Nvidia Shares Recipe to Accelerate AI Cloud Adoption

May 29, 2017

In March, Nvidia revealed blueprints for a new open source Tesla GPU-based accelerator – HGX-1 – developed for clouds with Microsoft under its Project Olym Read more…

By Tiffany Trader

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This