Microsoft Brings MapReduce into the Fold

By Nicole Hemsoth

July 18, 2011

This week Microsoft unveiled Project Daytona, which is a community technical preview release of their own MapReduce framework designed and built for their own Windows Azure cloud offering.

Microsoft claims that their implementation of an interative MapReduce runtime on their cloud will allow researchers to capture the scalability of the cloud without sacrificing the performance and compute horsepower needed to analyze large data sets. In their statement today, Microsoft said that Project Daytona will allow researchers to “analyze data sets on gigabytes or terabytes of data and run large-scale machine learning algorithms on dozens or hundreds of compute cores.”

According to softies behind Project Daytona, one of the most persistent complaints they received from researchers was that they needed a data analysis and processing framework robust enough to handle the increasingly large data sets they were contending with. Like those in the enterprise space, these researchers were finding it difficult to find meaning in their massive pools of data using simplified tools. As many who are familiar with the MapReduce framework, however, using it to create parallelized code capable of uncovering hidden value in data isn’t light work—it took expertise that many domain specialists don’t possess.

Arguably, one of Microsoft’s strong suits has historically been their ability to take programmatic headaches, condense them behind a simple user interface and let the experts handle the drama. This  is what they are hoping to do with Project Daytona on the software level while letting a bevy of instructional materials, sample code, and easy interfaces make the rest a bit more palatable for the average research group.

In terms of the key benefits, Microsoft says that their strong point with Project Daytona is that it was purpose-built for the cloud. For their cloud. The virtual machines, they say, “irrespective of infrastructure as a service (IaaS) or platform as a service (PaaS), introduce unique challenges and architectural tradeoffs for implementing a scale-out computation framework such as Project Daytona. Out of these, the most crucial are network communications between virtual machines (VMs) and the non-persistent disks of VMs. We have tuned the scheduling, network communications scheduling, and the fault tolerance logic of Project Daytona to suit this situation.”

Additionally, they point to the fact that this has been designed specifically with cloud storage services in mind via their defined stream-based data access layer for cloud data sources (which only include Windows Azure blob storage, although they claim more will be on the way at an undefined moment in the future). This means they will be able to partition data dynamically while supporting parallel reads, leaving the data inside the memory or in local non-persistent disks with backups relegated to the blobs. This means Project Daytona can gobble data without the overhead hit and overcome failures without a crisis, relying on their  Azure storage services and without the need for a distributed file system.

If you shed the messy data movement issues, the scalability of the cloud for projects that are data-instensive can be quite a selling point. Instant provisioning makes the process seamless and users can define, shut down and otherwise manipulate virtual machines as needed. As Microsoft says in its closing message about the release, “Project Daytona lets you focus on your data exploration; without having to worry about acquiring compute capacity or time-consuming hardware setup and management.”

While Roger Barga and his team at the eXtreme Computing Group at Microsoft Research plan to fine-tune the offering in coming months, in many ways the release comes ready-made for new developers to climb on board without extensive parallel programming knowledge—always a spot of welcome news for scientific researchers who want to trade in their system admin skills for more time to get back to their focused work.

The project was borne out of the eXtreme Computing Group’s Cloud Research Engagement Program, which is a broad initiative that Microsoft hopes will “change the paradigm for scholarly and scientific research by extending the power of the computer into the cloud.” The group behind the effort is working on next generation cloud computing technologies in conjunction with the researchers who will be making the most use of such developments.

Other noteworthy projects that have spun out of their cloud program include the European research effort, VENUS-C Cloud Infrastructure, which is being tested and deployed on Azure with the promise of bringing new applications for bioinformatics, engineering, earth sciences and healthcare, among others, to a new class of users via the cloud.

Microsoft is blending what appears to be a dwindling presence in traditional HPC into its cloud offering with a host of announcements this year that cater to the HPC crowd yet provide the cloud as the backbone of the research. Even a quick glance down this list of initiatives that are research-oriented should give you an idea that Microsoft is serious about making its Azure the cloud of choice for technical and scientific computing.

On that note, the effort is in many ways geared toward appeasing the two key words that are the tip of every tech person’s tongue these days; big data and cloud computing. While Project Daytona is something of a latecomer to the big data cloud party given the Hadoop/MapReduce play Amazon made earlier this year, it is nonetheless unique in terms of its focus. Instead of appealing directly to the enterprise data mining professional, this community release offering is set apart by its emphasis on the researcher or scientist.

This is not to say that MapReduce on Microsoft’s cloud couldn’t aim to please the commercial data pro—it’s more a matter of messaging. Only time will tell what kind of adoption this will get once it gets off the ground and the bugs exterminated, of course, but it’s noteworthy in its target market focus.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This