Microsoft Brings MapReduce into the Fold

By Nicole Hemsoth

July 18, 2011

This week Microsoft unveiled Project Daytona, which is a community technical preview release of their own MapReduce framework designed and built for their own Windows Azure cloud offering.

Microsoft claims that their implementation of an interative MapReduce runtime on their cloud will allow researchers to capture the scalability of the cloud without sacrificing the performance and compute horsepower needed to analyze large data sets. In their statement today, Microsoft said that Project Daytona will allow researchers to “analyze data sets on gigabytes or terabytes of data and run large-scale machine learning algorithms on dozens or hundreds of compute cores.”

According to softies behind Project Daytona, one of the most persistent complaints they received from researchers was that they needed a data analysis and processing framework robust enough to handle the increasingly large data sets they were contending with. Like those in the enterprise space, these researchers were finding it difficult to find meaning in their massive pools of data using simplified tools. As many who are familiar with the MapReduce framework, however, using it to create parallelized code capable of uncovering hidden value in data isn’t light work—it took expertise that many domain specialists don’t possess.

Arguably, one of Microsoft’s strong suits has historically been their ability to take programmatic headaches, condense them behind a simple user interface and let the experts handle the drama. This  is what they are hoping to do with Project Daytona on the software level while letting a bevy of instructional materials, sample code, and easy interfaces make the rest a bit more palatable for the average research group.

In terms of the key benefits, Microsoft says that their strong point with Project Daytona is that it was purpose-built for the cloud. For their cloud. The virtual machines, they say, “irrespective of infrastructure as a service (IaaS) or platform as a service (PaaS), introduce unique challenges and architectural tradeoffs for implementing a scale-out computation framework such as Project Daytona. Out of these, the most crucial are network communications between virtual machines (VMs) and the non-persistent disks of VMs. We have tuned the scheduling, network communications scheduling, and the fault tolerance logic of Project Daytona to suit this situation.”

Additionally, they point to the fact that this has been designed specifically with cloud storage services in mind via their defined stream-based data access layer for cloud data sources (which only include Windows Azure blob storage, although they claim more will be on the way at an undefined moment in the future). This means they will be able to partition data dynamically while supporting parallel reads, leaving the data inside the memory or in local non-persistent disks with backups relegated to the blobs. This means Project Daytona can gobble data without the overhead hit and overcome failures without a crisis, relying on their  Azure storage services and without the need for a distributed file system.

If you shed the messy data movement issues, the scalability of the cloud for projects that are data-instensive can be quite a selling point. Instant provisioning makes the process seamless and users can define, shut down and otherwise manipulate virtual machines as needed. As Microsoft says in its closing message about the release, “Project Daytona lets you focus on your data exploration; without having to worry about acquiring compute capacity or time-consuming hardware setup and management.”

While Roger Barga and his team at the eXtreme Computing Group at Microsoft Research plan to fine-tune the offering in coming months, in many ways the release comes ready-made for new developers to climb on board without extensive parallel programming knowledge—always a spot of welcome news for scientific researchers who want to trade in their system admin skills for more time to get back to their focused work.

The project was borne out of the eXtreme Computing Group’s Cloud Research Engagement Program, which is a broad initiative that Microsoft hopes will “change the paradigm for scholarly and scientific research by extending the power of the computer into the cloud.” The group behind the effort is working on next generation cloud computing technologies in conjunction with the researchers who will be making the most use of such developments.

Other noteworthy projects that have spun out of their cloud program include the European research effort, VENUS-C Cloud Infrastructure, which is being tested and deployed on Azure with the promise of bringing new applications for bioinformatics, engineering, earth sciences and healthcare, among others, to a new class of users via the cloud.

Microsoft is blending what appears to be a dwindling presence in traditional HPC into its cloud offering with a host of announcements this year that cater to the HPC crowd yet provide the cloud as the backbone of the research. Even a quick glance down this list of initiatives that are research-oriented should give you an idea that Microsoft is serious about making its Azure the cloud of choice for technical and scientific computing.

On that note, the effort is in many ways geared toward appeasing the two key words that are the tip of every tech person’s tongue these days; big data and cloud computing. While Project Daytona is something of a latecomer to the big data cloud party given the Hadoop/MapReduce play Amazon made earlier this year, it is nonetheless unique in terms of its focus. Instead of appealing directly to the enterprise data mining professional, this community release offering is set apart by its emphasis on the researcher or scientist.

This is not to say that MapReduce on Microsoft’s cloud couldn’t aim to please the commercial data pro—it’s more a matter of messaging. Only time will tell what kind of adoption this will get once it gets off the ground and the bugs exterminated, of course, but it’s noteworthy in its target market focus.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HPE to provide the DoD High Performance Computing Modernizatio Read more…

By Tiffany Trader

Topological Quantum Superconductor Progress Reported

February 20, 2018

Overcoming sensitivity to decoherence is a persistent stumbling block in efforts to build effective quantum computers. Now, a group of researchers from Chalmers University of Technology (Sweden) report progress in devisi Read more…

By John Russell

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This