Software Carpentry Revisited

By Nicole Hemsoth

July 18, 2011

Software engineering is still something that gets too little attention from the technical computing community, much to the detriment of the scientists and engineers writing the applications. Greg Wilson has been on a mission to remedy that, mainly through his efforts at Software Carpentry, where he is the project lead. HPCwire asked Wilson about the progress he’s seen over the last several years and what remains to be done.

HPCwire: We last spoke five years ago about Software Carpentry — your work to improve the software development skills of scientists and engineers. Have you been able to see any progress along this front?

Greg Wilson: Yes, on a small scale, but no, not in general. A lot of students and professionals have used the Software Carpentry materials — we get several hundred hits a day, mostly via Google searches — and based on their feedback, they do find them useful. Elsewhere, we have seen a growing number of conscientious scientists worrying about the problems of sharing and reproducibility, and other courses like Software Carpentry springing up, primarily in bioinformatics and astronomy.

Overall, though, I have to say that most scientists and engineers don’t use computers any more proficiently today than they did twenty years ago, never mind five. For example, I would bet that the percentage of grad students in science and engineering departments using version control to keep track of what they did when, and to share their work with colleagues, hasn’t shifted in that time.

HPCwire: What hasn’t improved?

Wilson: Fundamentally, what hasn’t improved is people’s ability to do math. Suppose that picking up some basic computational skills—version control, testing, Make, the shell, using a debugger, and so on—takes five full-time weeks. Whether that’s one five-week marathon, or the time is spread out over several months, it still costs roughly 10 percent of the scientist’s annual salary, if you’re thinking like an administrator, or 10 percent of their annual published output, if you’re thinking like a grad student’s supervisor.

If we assume our scientist only keeps doing research for another 10 years (which I hope is pessimistic), and a depreciation rate of 20 percent (which I also hope is pessimistic), then this only has to improve the scientist’s productivity by 2.4 percent in order to pay for itself. That works out to just under an hour per week during those ten years; anything above that is money or time in the bank. Looking at the results of the survey we did in 2008, even scientists who _aren’t_ primarily computationalists are spending a lot more time than that wrestling with software.

Now suppose the feedback we get from people who’ve taken the course is right, and that these skills save them a day a week or more. Let’s assume the average scientist or engineer costs $75,000 a year. 20 percent of their time over ten years, at the same 20 percent discount rate, works out to roughly $63,000; at a more realistic discount rate of 10 percent, it’s roughly $93,000. That’s roughly a ten-fold return on $7,500 — five weeks of their time right now at the same annual salary.

So why don’t people do it? Or to put a sharper point on it, why don’t their bosses and supervisors require them to? I think there are four reasons:

(1) Time and money spent show up in the budget; time and money saved through higher productivity don’t. Of course, this is a problem for more than just computational skills training.

(2) Sure, if I knew some Perl, I could solve this problem in five minutes instead of an hour, but learning that much Perl will take two days, and the deadline for this paper is tomorrow. And then I have to prepare a mid-term for the course I’m teaching, or fill in my benefits paperwork.  Something that pays off in the long run is not useful if all our deadlines are short-term.

(3) It’s a case of the blind leading the blind. If most of the people around you don’t know how to automate tasks using Make and the shell, for example, you’re unlikely to start doing it yourself. And yes, there are lots of good tutorials on the web, but it’s hard to find the right ones if you don’t know what keywords the cognoscenti use to describe these things, and even harder to understand them.

(4) Institutionally, the people who fight for scientific computing resources are usually those doing HPC, and because of (3), they almost always fight for more hardware, rather than the skills to use that hardware effectively. Most HPC vendors aren’t any more enlightened, which is shortsighted. If more people knew how to do simple things well, more of them would try advanced things, which would lead pretty quickly to increased sales. Right now, though, it’s easier to get a million dollars for a new cluster than a hundred thousand to train people how to use computers effectively.

HPCwire: Are there software development skills or practices that turned out to be more difficult to impart to non-computer science types than you first thought?

Wilson: Most of the difficulty has actually been our misconceptions of what scientists and engineers want, rather than difficulties on their side. Scientists and engineers _do_ tend to be fairly smart people. As a computer scientist, I always want to teach fundamental principles of computing that can be widely applied. As per point (2) above, what students can actually invest time in is solutions to the specific problems they face today. They’re happy to have the general principles explained after the fact, if ever, and even happier to infer those general principles themselves from lots of useful worked examples.

It’s sometimes possible to find a happy medium, and I think our lectures on regular expressions and SQL do so. But in other areas, where the payoff takes longer, it’s really hard to find a path where every step is immediately rewarding. For example, object-oriented programming doesn’t solve any problem that people writing hundred-line programs realize they have.

This is all complicated by the fact that for a lot of people in engineering, neuroscience, and other fields, computing means computing in a specific platform like R, SPSS, SAS, or MATLAB — and even then, “MATLAB” might actually mean a large domain-specific package on top of MATLAB itself. Most of our course materials are in Python, and while it’s an easy language to learn, someone who whose colleagues work exclusively in R will quite rightly think that learning a new language is a high price to pay for some insights whose value isn’t immediately apparent.

Reaching those people would require an retooling for every single language, which we simply don’t have the resources to do.  However, these people can and do benefit from generic material on version control, the shell, and databases, so that’s where more of our effort is currently going.

HPCwire: HPC practitioners seem to be of two minds about optimizing software workflow. Some believe the emphasis needs to be on minimizing development time, while others believe maximizing runtime performance is paramount. Often these two approaches are at odds with one another. Where do you stand on this dynamic?

Wilson: It’s a false dichotomy, and a dangerous one to boot. Given the complexity of modern architectures, the only way to make something fast is to get it working, build some tests so that you can tell when subsequent changes break things, and then start tweaking it based on performance profiling. Maximizing runtime performance therefore doesn’t compete with minimizing development time; it _requires_ it, particularly if you’re then going to have to move it to a slightly different chip set, or maybe, a few years down the road, port it to a very different architecture.

HPCwire: You recently performed a study on how scientists develop and use software? What were the major findings?

Wilson: Yes, in the fall of 2008 we did an online survey of how scientists and engineers use computers, where they learned what they know, and so on.  1,972 people responded, and we published the results in 2009. The major finding, in my opinion, was to confirm that almost everyone in science and engineering is primarily self-taught when it comes to computing, and that they’re spending a lot of time banging their heads against software problems.

HPCwire: Based on the study results, what do you think needs to be done now to help scientists adopt better software practices?

Wilson: The easy answer is, “Put more computing lab courses in undergraduate programs,” but that’s not realistic. As a physicist once said to me, “What should we take out to make room — thermodynamics or quantum mechanics?” Another solution would be to require people to pass something like a driving test before letting them use big iron, but that will never fly politically — as much as people working in HPC centers might want it to.

Realistically, I think there are only two possibilities. The first is for HPC vendors to start emphasizing these skills as a prerequisite for getting your money’s worth out of that shiny new cluster you just bought. The second is for journal editors to start requiring some evidence of competence when people submit work with a large computational component. I don’t think full reproducibility is a realistic goal, but [something like] “All of our code is under version control, it can be built with a single command, or with two commands, if there’s a separate configuration step, and we have a test suite that exercises at least _some_ of its functionality,” would be an excellent start.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

FPGA-Based Genome Processor Bundles Storage

January 6, 2017

Bio-processor developer Edico Genome is collaborating with storage specialist Dell EMC to bundle computing and storage for analyzing gene-sequencing data. Read more…

By George Leopold

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

Addison Snell: The ‘Wild West’ of HPC Disaggregation

December 16, 2016

We caught up with Addison Snell, CEO of HPC industry watcher Intersect360, at SC16 last month, and Snell had his expected, extensive list of insights into trends driving advanced-scale technology in both the commercial and research sectors. Read more…

By Doug Black

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Deep Learning Paves Way for Better Diagnostics

September 19, 2016

Stanford researchers are leveraging GPU-based machines in the Amazon EC2 cloud to run deep learning workloads with the goal of improving diagnostics for a chronic eye disease, called diabetic retinopathy. The disease is a complication of diabetes that can lead to blindness if blood sugar is poorly controlled. It affects about 45 percent of diabetics and 100 million people worldwide, many in developing nations. Read more…

By Tiffany Trader

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This