Software Carpentry Revisited

By Nicole Hemsoth

July 18, 2011

Software engineering is still something that gets too little attention from the technical computing community, much to the detriment of the scientists and engineers writing the applications. Greg Wilson has been on a mission to remedy that, mainly through his efforts at Software Carpentry, where he is the project lead. HPCwire asked Wilson about the progress he’s seen over the last several years and what remains to be done.

HPCwire: We last spoke five years ago about Software Carpentry — your work to improve the software development skills of scientists and engineers. Have you been able to see any progress along this front?

Greg Wilson: Yes, on a small scale, but no, not in general. A lot of students and professionals have used the Software Carpentry materials — we get several hundred hits a day, mostly via Google searches — and based on their feedback, they do find them useful. Elsewhere, we have seen a growing number of conscientious scientists worrying about the problems of sharing and reproducibility, and other courses like Software Carpentry springing up, primarily in bioinformatics and astronomy.

Overall, though, I have to say that most scientists and engineers don’t use computers any more proficiently today than they did twenty years ago, never mind five. For example, I would bet that the percentage of grad students in science and engineering departments using version control to keep track of what they did when, and to share their work with colleagues, hasn’t shifted in that time.

HPCwire: What hasn’t improved?

Wilson: Fundamentally, what hasn’t improved is people’s ability to do math. Suppose that picking up some basic computational skills—version control, testing, Make, the shell, using a debugger, and so on—takes five full-time weeks. Whether that’s one five-week marathon, or the time is spread out over several months, it still costs roughly 10 percent of the scientist’s annual salary, if you’re thinking like an administrator, or 10 percent of their annual published output, if you’re thinking like a grad student’s supervisor.

If we assume our scientist only keeps doing research for another 10 years (which I hope is pessimistic), and a depreciation rate of 20 percent (which I also hope is pessimistic), then this only has to improve the scientist’s productivity by 2.4 percent in order to pay for itself. That works out to just under an hour per week during those ten years; anything above that is money or time in the bank. Looking at the results of the survey we did in 2008, even scientists who _aren’t_ primarily computationalists are spending a lot more time than that wrestling with software.

Now suppose the feedback we get from people who’ve taken the course is right, and that these skills save them a day a week or more. Let’s assume the average scientist or engineer costs $75,000 a year. 20 percent of their time over ten years, at the same 20 percent discount rate, works out to roughly $63,000; at a more realistic discount rate of 10 percent, it’s roughly $93,000. That’s roughly a ten-fold return on $7,500 — five weeks of their time right now at the same annual salary.

So why don’t people do it? Or to put a sharper point on it, why don’t their bosses and supervisors require them to? I think there are four reasons:

(1) Time and money spent show up in the budget; time and money saved through higher productivity don’t. Of course, this is a problem for more than just computational skills training.

(2) Sure, if I knew some Perl, I could solve this problem in five minutes instead of an hour, but learning that much Perl will take two days, and the deadline for this paper is tomorrow. And then I have to prepare a mid-term for the course I’m teaching, or fill in my benefits paperwork.  Something that pays off in the long run is not useful if all our deadlines are short-term.

(3) It’s a case of the blind leading the blind. If most of the people around you don’t know how to automate tasks using Make and the shell, for example, you’re unlikely to start doing it yourself. And yes, there are lots of good tutorials on the web, but it’s hard to find the right ones if you don’t know what keywords the cognoscenti use to describe these things, and even harder to understand them.

(4) Institutionally, the people who fight for scientific computing resources are usually those doing HPC, and because of (3), they almost always fight for more hardware, rather than the skills to use that hardware effectively. Most HPC vendors aren’t any more enlightened, which is shortsighted. If more people knew how to do simple things well, more of them would try advanced things, which would lead pretty quickly to increased sales. Right now, though, it’s easier to get a million dollars for a new cluster than a hundred thousand to train people how to use computers effectively.

HPCwire: Are there software development skills or practices that turned out to be more difficult to impart to non-computer science types than you first thought?

Wilson: Most of the difficulty has actually been our misconceptions of what scientists and engineers want, rather than difficulties on their side. Scientists and engineers _do_ tend to be fairly smart people. As a computer scientist, I always want to teach fundamental principles of computing that can be widely applied. As per point (2) above, what students can actually invest time in is solutions to the specific problems they face today. They’re happy to have the general principles explained after the fact, if ever, and even happier to infer those general principles themselves from lots of useful worked examples.

It’s sometimes possible to find a happy medium, and I think our lectures on regular expressions and SQL do so. But in other areas, where the payoff takes longer, it’s really hard to find a path where every step is immediately rewarding. For example, object-oriented programming doesn’t solve any problem that people writing hundred-line programs realize they have.

This is all complicated by the fact that for a lot of people in engineering, neuroscience, and other fields, computing means computing in a specific platform like R, SPSS, SAS, or MATLAB — and even then, “MATLAB” might actually mean a large domain-specific package on top of MATLAB itself. Most of our course materials are in Python, and while it’s an easy language to learn, someone who whose colleagues work exclusively in R will quite rightly think that learning a new language is a high price to pay for some insights whose value isn’t immediately apparent.

Reaching those people would require an retooling for every single language, which we simply don’t have the resources to do.  However, these people can and do benefit from generic material on version control, the shell, and databases, so that’s where more of our effort is currently going.

HPCwire: HPC practitioners seem to be of two minds about optimizing software workflow. Some believe the emphasis needs to be on minimizing development time, while others believe maximizing runtime performance is paramount. Often these two approaches are at odds with one another. Where do you stand on this dynamic?

Wilson: It’s a false dichotomy, and a dangerous one to boot. Given the complexity of modern architectures, the only way to make something fast is to get it working, build some tests so that you can tell when subsequent changes break things, and then start tweaking it based on performance profiling. Maximizing runtime performance therefore doesn’t compete with minimizing development time; it _requires_ it, particularly if you’re then going to have to move it to a slightly different chip set, or maybe, a few years down the road, port it to a very different architecture.

HPCwire: You recently performed a study on how scientists develop and use software? What were the major findings?

Wilson: Yes, in the fall of 2008 we did an online survey of how scientists and engineers use computers, where they learned what they know, and so on.  1,972 people responded, and we published the results in 2009. The major finding, in my opinion, was to confirm that almost everyone in science and engineering is primarily self-taught when it comes to computing, and that they’re spending a lot of time banging their heads against software problems.

HPCwire: Based on the study results, what do you think needs to be done now to help scientists adopt better software practices?

Wilson: The easy answer is, “Put more computing lab courses in undergraduate programs,” but that’s not realistic. As a physicist once said to me, “What should we take out to make room — thermodynamics or quantum mechanics?” Another solution would be to require people to pass something like a driving test before letting them use big iron, but that will never fly politically — as much as people working in HPC centers might want it to.

Realistically, I think there are only two possibilities. The first is for HPC vendors to start emphasizing these skills as a prerequisite for getting your money’s worth out of that shiny new cluster you just bought. The second is for journal editors to start requiring some evidence of competence when people submit work with a large computational component. I don’t think full reproducibility is a realistic goal, but [something like] “All of our code is under version control, it can be built with a single command, or with two commands, if there’s a separate configuration step, and we have a test suite that exercises at least _some_ of its functionality,” would be an excellent start.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This