LANL Sends Environmental Management to the Cloud

By Nicole Hemsoth

July 19, 2011

Purveyor of cloud-based environmental management software, Locus Technologies, recently announced that it had been selected to manage environmental information and data for Los Alamos National Laboratory (LANL).

The company claimed the contract to manage the lab’s data in their cloud was worth up to $2 million. Their Locus EIM software will help LANL organize and manage all future environmental compliance and monitoring activities using a SaaS model. Locus says this will better position LANL to address legacy site contamination, both chemical and radioactive, across a number of locations and streamline views into the bigger picture of environmental management at the facility.

The cloud-based software will fulfill a number of functions, including organization of a number of media types, comparison of historical and new contamination levels, planning, sampling and processing environmental data and more generally handling all coordination, integration and community of that data.

Locus says they’ve designed their software  “specifically to meet challenging water-quality management issues, covering both analytical chemistry and the management of radionuclides data in a complex hydro-geological setting.” They say their EIM software will also provide a web-based GIS system for Los Alamos data that will be available to the general public, bringing ease of use and complete transparency to complex data sets. “

We recently interviewed Locus Technologies’ president and CEO, Neno Duplan about the contract and got to the heart of what is involved with these types of software solutions in cloud environments.

HPCc: Can you describe your cloud and what made this an attractive option for LANL—after all, there are a number of other possibilities. Is this an on-demand cloud or public resource like Amazon’s or SaaS or some combination of all? Please be very specific.

Duplan: Locus offers its on-demand services through its own Cloud platform that has been serving customers in this industry since 1999. Locus Cloud is true Software as a Service (SaaS) and that requires some explanation.  We have noticed over the last year or so lots of confusion about this term and it is important to define it.  The myriad terms used by software and service companies to describe the delivery of on-premise applications is confusing—and that confusion is by design. As more and more companies move to SaaS solutions and cloud computing, legacy software vendors will continue to confuse the conversation.

Cloud, software-as-a-service (SaaS), on-demand, application service provider (ASP), business process outsourcing (BPO), outsourced—what do all these words mean? Are they really all the same? Many legacy on-premise application providers would like you to believe so, but there are vast differences. The distinction between SaaS and earlier applications delivered over the Internet, or applications that environmental consultants would deliver over Internet today, is that SaaS solutions were developed specifically to leverage web technologies such as the browser, thereby making them web-native.

The data design and architecture of SaaS applications are specifically built with a single instance of software shared among all customers accessing it and ‘multi-tenant’ backend, thus enabling multiple customers or users to access a shared data model. Locus EIM is one such application.  Systems developed as client servers also could be delivered via web, but they don’t qualify as SaaS applications as they were not natively developed for the web. Those are kind of drinking of “nonalcoholic wine”. Now with definition out of the way, let’s focus on Locus Cloud apps.

Locus Cloud has the following characteristics:

•    Customer implementations off premise and in shared datacenters
•    Pay-as-you-go pricing model
•    All customers on the same software code line
•    Customer sharing of data center resources
•    Application delivery is one-to-many model (single instance, multi-tenant architecture) [as opposed to  a one-to-one model, including architecture, pricing, partnering, and management characteristics]
•    Centralized and rolling feature updating, which obviates the need for end-users to download patches and upgrades?
•    Frequent integration into a larger network of communicating software—either as part of a mashup or a plugin to a platform as a service
•    Updates included with the service

By having every customer on the same line of code and the same version of software, Locus’ SaaS provides real business value: lower cost, better service, and greater customer intimacy.

HPCc: Provide us with the hardware specs for this particular cloud service—we are a bit confused; do you have a cluster upon which you host customer data/applications? Again, be as specific and detailed as possible.

Duplan: Locus Cloud is delivered through a redundant professionally managed data centers in clustered environment. Both application(s) and data are hosted on Locus cloud. Our server farms are highly scalable and we can expand to meet any customer demand. We use standard server technology and there is nothing proprietary about hardware. It is commodity hardware.

EIM software is quite sophisticated—can you go a bit beyond the press release and tell us first what this will entail data-wise/what the software will accomplish and also, what the computational requirements are for something at the scale LANL requires.

Yes, EIM is a sophisticated application dealing with complex data sets and complex workflow processes. In addition to expected functionality to deal with complex domain of analytical chemistry and radionuclides management EIM also provides:

•    Meshups with Google Maps for GIS-based data mapping
•    Ability to quickly incorporate more feature requests from users, since there is frequently no marginal cost for requesting new features
•    Faster new feature releases, since the entire community of users benefits (the wisdom of the crowd syndrome along the rolling upgrade program)
•    Embodiment of recognized best practices, since the user community drives Locus to support best practice
•    Automation of data collection via a single file EDD (Electronic Data Deliverable) format
•    Proven record of scalability to millions analytical records managed from a single code instance in real time
•    Embedded Long Term Monitoring Optimization Module
•    Full and embedded data validation module
•    Fully integrated modules offered through Single Sign On with no third party software add-ons.

HPCc: LANL has its own clusters; why did they decide to outsource this type of computing?

Duplan: LANL has its own clusters of servers on premises. But that does not make LANL experts in environmental database development. LANL wanted off-the shelf solution delivered in the cloud to accelerate implementation and bring all their data into the single system. Locus EIM cloud allowed them to do exactly that. Another reason is cost. There is little upfront cost to deploy solution in the cloud as opposed to deploying custom applications on premises.  The third reason is subject matter knowledge. Locus has this in spades and we have the only module in the market that deals with radionuclides (See more in: Japan quake data should be stored in the cloud here or here.)

Locus’ software enabled LANL to organize and validate all key environmental information in a single system, which includes radionculides data, analytical data for water, air and soil, weather data, sustainability, compliance and environmental content. Since Locus software is delivered via Cloud there was no hardware to procure, no large, up-front license fee, and no complex set-ups.

HPCc: Let’s move outside of LANL for a moment—what are some of the most sophisticated use cases are there for your cloud computing service in terms of data size/movement/computational requirements.

Duplan: All Locus deployments are large and complex as our software is designed to deal with huge data sets in the real time. Our applications offered through the cloud are very different from the ones that we see in consumer world such as Google, Amazon, Facebook and alike. Common for consumer web and some business applications are very large number of users, high traffic, retrieving relatively simple and small data sets to perform a simple action on them such as buy or befriend or “like”. In Locus’ case, our user base is much smaller, but much more sophisticated and demanding. It is not atypical that average EIM or ePortal user performs queries that produce millions of records that need to quickly be interpreted with assistance of intelligent databases, charted, contoured, mapped and reported while making sure that myriad of requirements from many regulatory frameworks are met  in the process.

Most of Locus applications dwarf consumer web requirements in terms of complexity and size of databases. For that and other reasons companies like ExxonMobil, Chevron, Honeywell or Exelon all selected Locus’ Cloud to deal with their environmental, energy and sustainability data and information. And that is the reason that if you type in Google a common term “environmental data management”, the link to Locus’ website will be among the top few of the first page of the (unpaid) search results. Significant amount of intelligence and Expert System technology is built in the Locus apps.
 
HPCc: Do you think most users are deploying your service to replace on-site hardware or is this more of a “bursty” needs-driven market to supplement existing HPC?

Duplan: It is more “bursty” needs-driven, but not to replace existing HPC, but to replace non-existent or spreadsheet driven processes that resulted in information overflow that is impossible to manage without paying big bucks to consultants who created the problems in the first place.

Environmental and energy data is collected from a variety of sources: from consultants, contractors, labs, suppliers, customer’s own field employees, or as is more increasingly true, by remote wireless sensors. It is stored in remote locations, such as the supplier’s spreadsheets or other files on the desktop, laptop, or network server of suppliers. The customer usually has no access to, or ownership of, such data. Such large, dispersed volumes of information are difficult to track and very costly to audit without relational databases, and content or document management solutions software. If the customer does adopt environmental information management systems, the systems typically fall into one of two categories:

•    Stand-alone systems that project-level consultants and staff engineers love, but that do not enable managers to perform corporate governance, data-mining, or forecasting tasks, or share information across a large organization or the web.

•    High-end, all-encompassing extensions of ERP systems, such as SAP, that can scale to support the needs of hundreds or thousands of users, but environmental managers refuse to use because they are complex and require costly additional programming to manage environmental or energy data. Such enterprise systems are often characterized as being “a mile wide and inch deep” because they typically lack domain depth, are not offered over the web, are expensive and difficult to install and integrate, cannot be used by suppliers, and are not particularly user-friendly.

As a result, too many businesses and governmental agencies are “flying blind” when it comes to managing their environmental, water or energy information.

Companies with these types of problems should consider the Cloud Computing Model. The model exactly fits the way environmental information needs to be managed through mashups of various databases and technologies, and has the potential to completely upend the way corporations manage their environmental liability data or energy and resource consumption. 

Enterprises that have large portfolios of properties can use Cloud Computing as a very low-cost, no-commitment way to quickly take control of their mission critical environmental data and information and get new services and capabilities to take control of their compliance needs by entirely circumventing the IT department.

Many companies that do not have control or ownership of their critical environmental data, and most today don’t, and rely on an army of consultants and their spreadsheets to meet their reporting requirements, can continue trying to ignore Cloud Computing as it is just in its infancy, but doing so may be a mistake as Cloud Computing is looking more and more a classic disruptive technology.

How quickly can a company get control of its analytical data that sits scattered in consulting offices and consolidate it in to a usable database? Four weeks? Eight weeks? 10 months? For many enterprises, the answer is even longer. Today, the businesses need to respond in Internet time with new services, capabilities, and offerings to stay on top of their environmental compliance requirements. Yet, most companies aren’t well equipped to respond with speed. Most companies still have a “procure and provision” approach to the infrastructure that supports their services. Even if the decision has been made to purchase enterprise software to organize and manage large quantities of environmental and energy information and compliance activities in house, lengthy approval processes often kill many of these systems before they can be deployed.  The reason is that these can be a lengthy process of actions involving everyone from storage, networking, security, and sometimes facilities.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This