LANL Sends Environmental Management to the Cloud

By Nicole Hemsoth

July 19, 2011

Purveyor of cloud-based environmental management software, Locus Technologies, recently announced that it had been selected to manage environmental information and data for Los Alamos National Laboratory (LANL).

The company claimed the contract to manage the lab’s data in their cloud was worth up to $2 million. Their Locus EIM software will help LANL organize and manage all future environmental compliance and monitoring activities using a SaaS model. Locus says this will better position LANL to address legacy site contamination, both chemical and radioactive, across a number of locations and streamline views into the bigger picture of environmental management at the facility.

The cloud-based software will fulfill a number of functions, including organization of a number of media types, comparison of historical and new contamination levels, planning, sampling and processing environmental data and more generally handling all coordination, integration and community of that data.

Locus says they’ve designed their software  “specifically to meet challenging water-quality management issues, covering both analytical chemistry and the management of radionuclides data in a complex hydro-geological setting.” They say their EIM software will also provide a web-based GIS system for Los Alamos data that will be available to the general public, bringing ease of use and complete transparency to complex data sets. “

We recently interviewed Locus Technologies’ president and CEO, Neno Duplan about the contract and got to the heart of what is involved with these types of software solutions in cloud environments.

HPCc: Can you describe your cloud and what made this an attractive option for LANL—after all, there are a number of other possibilities. Is this an on-demand cloud or public resource like Amazon’s or SaaS or some combination of all? Please be very specific.

Duplan: Locus offers its on-demand services through its own Cloud platform that has been serving customers in this industry since 1999. Locus Cloud is true Software as a Service (SaaS) and that requires some explanation.  We have noticed over the last year or so lots of confusion about this term and it is important to define it.  The myriad terms used by software and service companies to describe the delivery of on-premise applications is confusing—and that confusion is by design. As more and more companies move to SaaS solutions and cloud computing, legacy software vendors will continue to confuse the conversation.

Cloud, software-as-a-service (SaaS), on-demand, application service provider (ASP), business process outsourcing (BPO), outsourced—what do all these words mean? Are they really all the same? Many legacy on-premise application providers would like you to believe so, but there are vast differences. The distinction between SaaS and earlier applications delivered over the Internet, or applications that environmental consultants would deliver over Internet today, is that SaaS solutions were developed specifically to leverage web technologies such as the browser, thereby making them web-native.

The data design and architecture of SaaS applications are specifically built with a single instance of software shared among all customers accessing it and ‘multi-tenant’ backend, thus enabling multiple customers or users to access a shared data model. Locus EIM is one such application.  Systems developed as client servers also could be delivered via web, but they don’t qualify as SaaS applications as they were not natively developed for the web. Those are kind of drinking of “nonalcoholic wine”. Now with definition out of the way, let’s focus on Locus Cloud apps.

Locus Cloud has the following characteristics:

•    Customer implementations off premise and in shared datacenters
•    Pay-as-you-go pricing model
•    All customers on the same software code line
•    Customer sharing of data center resources
•    Application delivery is one-to-many model (single instance, multi-tenant architecture) [as opposed to  a one-to-one model, including architecture, pricing, partnering, and management characteristics]
•    Centralized and rolling feature updating, which obviates the need for end-users to download patches and upgrades?
•    Frequent integration into a larger network of communicating software—either as part of a mashup or a plugin to a platform as a service
•    Updates included with the service

By having every customer on the same line of code and the same version of software, Locus’ SaaS provides real business value: lower cost, better service, and greater customer intimacy.

HPCc: Provide us with the hardware specs for this particular cloud service—we are a bit confused; do you have a cluster upon which you host customer data/applications? Again, be as specific and detailed as possible.

Duplan: Locus Cloud is delivered through a redundant professionally managed data centers in clustered environment. Both application(s) and data are hosted on Locus cloud. Our server farms are highly scalable and we can expand to meet any customer demand. We use standard server technology and there is nothing proprietary about hardware. It is commodity hardware.

EIM software is quite sophisticated—can you go a bit beyond the press release and tell us first what this will entail data-wise/what the software will accomplish and also, what the computational requirements are for something at the scale LANL requires.

Yes, EIM is a sophisticated application dealing with complex data sets and complex workflow processes. In addition to expected functionality to deal with complex domain of analytical chemistry and radionuclides management EIM also provides:

•    Meshups with Google Maps for GIS-based data mapping
•    Ability to quickly incorporate more feature requests from users, since there is frequently no marginal cost for requesting new features
•    Faster new feature releases, since the entire community of users benefits (the wisdom of the crowd syndrome along the rolling upgrade program)
•    Embodiment of recognized best practices, since the user community drives Locus to support best practice
•    Automation of data collection via a single file EDD (Electronic Data Deliverable) format
•    Proven record of scalability to millions analytical records managed from a single code instance in real time
•    Embedded Long Term Monitoring Optimization Module
•    Full and embedded data validation module
•    Fully integrated modules offered through Single Sign On with no third party software add-ons.

HPCc: LANL has its own clusters; why did they decide to outsource this type of computing?

Duplan: LANL has its own clusters of servers on premises. But that does not make LANL experts in environmental database development. LANL wanted off-the shelf solution delivered in the cloud to accelerate implementation and bring all their data into the single system. Locus EIM cloud allowed them to do exactly that. Another reason is cost. There is little upfront cost to deploy solution in the cloud as opposed to deploying custom applications on premises.  The third reason is subject matter knowledge. Locus has this in spades and we have the only module in the market that deals with radionuclides (See more in: Japan quake data should be stored in the cloud here or here.)

Locus’ software enabled LANL to organize and validate all key environmental information in a single system, which includes radionculides data, analytical data for water, air and soil, weather data, sustainability, compliance and environmental content. Since Locus software is delivered via Cloud there was no hardware to procure, no large, up-front license fee, and no complex set-ups.

HPCc: Let’s move outside of LANL for a moment—what are some of the most sophisticated use cases are there for your cloud computing service in terms of data size/movement/computational requirements.

Duplan: All Locus deployments are large and complex as our software is designed to deal with huge data sets in the real time. Our applications offered through the cloud are very different from the ones that we see in consumer world such as Google, Amazon, Facebook and alike. Common for consumer web and some business applications are very large number of users, high traffic, retrieving relatively simple and small data sets to perform a simple action on them such as buy or befriend or “like”. In Locus’ case, our user base is much smaller, but much more sophisticated and demanding. It is not atypical that average EIM or ePortal user performs queries that produce millions of records that need to quickly be interpreted with assistance of intelligent databases, charted, contoured, mapped and reported while making sure that myriad of requirements from many regulatory frameworks are met  in the process.

Most of Locus applications dwarf consumer web requirements in terms of complexity and size of databases. For that and other reasons companies like ExxonMobil, Chevron, Honeywell or Exelon all selected Locus’ Cloud to deal with their environmental, energy and sustainability data and information. And that is the reason that if you type in Google a common term “environmental data management”, the link to Locus’ website will be among the top few of the first page of the (unpaid) search results. Significant amount of intelligence and Expert System technology is built in the Locus apps.
 
HPCc: Do you think most users are deploying your service to replace on-site hardware or is this more of a “bursty” needs-driven market to supplement existing HPC?

Duplan: It is more “bursty” needs-driven, but not to replace existing HPC, but to replace non-existent or spreadsheet driven processes that resulted in information overflow that is impossible to manage without paying big bucks to consultants who created the problems in the first place.

Environmental and energy data is collected from a variety of sources: from consultants, contractors, labs, suppliers, customer’s own field employees, or as is more increasingly true, by remote wireless sensors. It is stored in remote locations, such as the supplier’s spreadsheets or other files on the desktop, laptop, or network server of suppliers. The customer usually has no access to, or ownership of, such data. Such large, dispersed volumes of information are difficult to track and very costly to audit without relational databases, and content or document management solutions software. If the customer does adopt environmental information management systems, the systems typically fall into one of two categories:

•    Stand-alone systems that project-level consultants and staff engineers love, but that do not enable managers to perform corporate governance, data-mining, or forecasting tasks, or share information across a large organization or the web.

•    High-end, all-encompassing extensions of ERP systems, such as SAP, that can scale to support the needs of hundreds or thousands of users, but environmental managers refuse to use because they are complex and require costly additional programming to manage environmental or energy data. Such enterprise systems are often characterized as being “a mile wide and inch deep” because they typically lack domain depth, are not offered over the web, are expensive and difficult to install and integrate, cannot be used by suppliers, and are not particularly user-friendly.

As a result, too many businesses and governmental agencies are “flying blind” when it comes to managing their environmental, water or energy information.

Companies with these types of problems should consider the Cloud Computing Model. The model exactly fits the way environmental information needs to be managed through mashups of various databases and technologies, and has the potential to completely upend the way corporations manage their environmental liability data or energy and resource consumption. 

Enterprises that have large portfolios of properties can use Cloud Computing as a very low-cost, no-commitment way to quickly take control of their mission critical environmental data and information and get new services and capabilities to take control of their compliance needs by entirely circumventing the IT department.

Many companies that do not have control or ownership of their critical environmental data, and most today don’t, and rely on an army of consultants and their spreadsheets to meet their reporting requirements, can continue trying to ignore Cloud Computing as it is just in its infancy, but doing so may be a mistake as Cloud Computing is looking more and more a classic disruptive technology.

How quickly can a company get control of its analytical data that sits scattered in consulting offices and consolidate it in to a usable database? Four weeks? Eight weeks? 10 months? For many enterprises, the answer is even longer. Today, the businesses need to respond in Internet time with new services, capabilities, and offerings to stay on top of their environmental compliance requirements. Yet, most companies aren’t well equipped to respond with speed. Most companies still have a “procure and provision” approach to the infrastructure that supports their services. Even if the decision has been made to purchase enterprise software to organize and manage large quantities of environmental and energy information and compliance activities in house, lengthy approval processes often kill many of these systems before they can be deployed.  The reason is that these can be a lengthy process of actions involving everyone from storage, networking, security, and sometimes facilities.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterized as transforming data into insights – which is exactly wh Read more…

By James Reinders

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 3, 2019

In November at SC18 in Dallas, HPCwire Readers’ and Editors’ Choice awards program commemorated its 15th year of honoring achievement in HPC, with categories ranging from Best Use of AI to the Workforce Diversity Leadership Award and recipients across a wide variety of industrial and research sectors. Read more…

By the Editorial Team

White House Top Science Post Filled After Two-Year Vacancy

January 3, 2019

Half-way into Trump's term, the Senate has confirmed a director for the Office of Science and Technology Policy (OSTP), the agency that coordinates science poli Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This