The New Era of Intelligent Application Mobility

By Duncan Johnston-Watt

July 19, 2011

Duncan Johnston-Watt, founder & CEO of Cloudsoft describes the concept of intelligent application mobility and what it signals for the new era of being able to seamlessly move applications across clouds and locations.

The dramatic growth in the use of multiple networked computers – often spread across the globe – in order to support business applications makes it compelling for an application to have mobility. For example, the impact of maintaining a server machine is reduced if the application(s) it hosts can be moved to an alternative machine before starting maintenance; disasters can be avoided if an application can be moved off failing machines; network load can be reduced by moving (all or parts of) an application closer to its data; performance can be improved if (all or parts of) an application is moved closer to its users.

Consequently a number of approaches are well established for achieving application mobility. For example, infrastructure virtualization vendors offer application mobility by moving virtual-machines between physical machines (VMware and IBM both refer to this as “live application mobility” 1). Distributed caching vendors facilitate mobility via the data tier2.

However these approaches are only partially effective. The “all-or-nothing” approach of moving entire virtual machines around, especially across wide-area networks, is expensive and slow.  The complex co-ordination of data across distributed caches will often fatally compromise performance and/or integrity, especially for high throughput systems or again where wide-area networks are involved. Instead what’s needed is a far more agile form of application mobility, and one that’s far better suited to the cloud generation.

What is Intelligent Application Mobility?

Intelligent Application Mobility enables business applications to dynamically distribute themselves as needed across multiple machines, locations, and clouds – while they are still running and under the full control of user-defined policies.
Intelligent Application Mobility achieves this by:

–    creating an all-software overlay network (on top of, and with no change to, existing networks)  that dynamically spans machines, locations and clouds as needed to form an Elastic Process Fabric

–    activating applications as fine-grained segments that can flow across the Elastic Process Fabric as needed

–    using policies combined with real-time monitoring to continually optimize segment deployment – for example to ensure that each segment is in the right location to deliver best performance

What types of applications need Intelligent Application Mobility?

It’s probably fair to say that most types of application would benefit to some extent from Intelligent Application Mobility: a self-optimizing application with real-time elasticity and that can near-instantly move itself out of harm’s way will always be advantageous. However there are particular types of application for which the approach is compelling.

Applications that execute business transactions are difficult to scale and distribute as they must maintain consistency and integrity when changes are made to data. Maintaining these constraints is rarely a problem when data contention and transaction volumes are low but challenges quickly emerge as business applications scale-out, particularly where applications involve wide area networks. Traditional approaches to solving scalability challenges include statically partitioning an application across multiple resources, replicating and synchronising multiple instance of the application, and the prevailing vogue of “stateless programming”.

The use of “stateless applications” is particularly interesting as ‘received wisdom’ deems that this approach is essential for cloud deployments: by removing application state from the server tier it doesn’t matter which instance of a server handles any given request, so “instance-on-demand” is available whereby you can spin up and spin down as many instances of the server as you want.

However so-called stateless approaches simply delegate the management of data contention to the data tier, which invariably makes the application less efficient: all necessary state has to be fetched from the data tier prior to servicing each request; any changes to business state must be mediated by the data tier; and all state must be given back to the data tier after each request. Consequently what would be simple and lightweight to achieve in a stateful process now becomes more complex and long-winded in a stateless process.

So the sweet-spots for Intelligent Application Mobility include any or all of the following characteristics:

–    distribution across multiple machines, locations or clouds

–    high volumes of transactions

–    volatile or unpredictable workloads

How is it used?

The capabilities that make up Intelligent Application Mobility, as discussed above, are exactly the kind of capabilities that middleware is intended to implement and make available as a service to developers. And with the availability of development frameworks such as Spring (from SpringSource) and  Seam (from Red Hat), this type of middleware can now be all-but completely hidden from the developer.  Consequently the main requirement for using Intelligent Application Mobility is to ensure that your applications are designed in a way that allows their deployment as fine-grained segments. For example, Microsoft actually calls these fine-grained segments “grains” and puts them at the heart of their “Framework for Cloud Computing”3.

One of the key advantages of encapsulating Intelligent Application Mobility in middleware in this way is that the developer can now, for the first time, code completely scale-agnostic, distribution-agnostic, and cloud-agnostic applications. Development returns to the simplicity of coding just the business logic and making method calls in order to use another service – the Intelligent Application Mobility middleware takes care of scaling, distribution and management issues at run-time.

About the Author

Duncan Johnston-Watt (Founder & Chief Executive Officer) is a serial entrepreneur and industry visionary with over twenty years experience in the software industry. Immediately prior to founding Cloudsoft Duncan was CTO at Enigmatec Corporation, the enterprise data center automation company he founded in 2001.  

A Computerworld Smithsonian Laureate for his pioneering work introducing Java Enterprise to financial services, Duncan holds an MSc in Computation from Oxford University and a BA in Mathematics and Philosophy from Leeds University

REFERENCES

1.    

“AIX 6 Workload Partition and Live Application Mobility”
http://www.ibm.com/developerworks/aix/library/au-wpar/index.html

“VMWare and F5 Announce Collaboration for Cloud Live Application Mobility”
http://news.softpedia.com/news/VMWare-and-F5-Announce-Collaboration-for-Cloud-Live-Application-Mobility-120583.shtml

“Enhance Business Continuance with Application Mobility Across Data Centers”
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9402/white_paper_c11-591960.pdf

2.

NetApp DataMotion
http://www.netapp.com/us/products/platform-os/datamotion.html

“What Is an Enterprise Data Fabric?”
http://community.gemstone.com/pages/viewpage.action?pageId=6032133

Scaleout Geoserver
http://www.scaleoutsoftware.com/products/product-extensions/scaleout-geoserver/

3.

“Orleans: A Framework for Cloud Computing” by Sergey Bykov, Alan Geller, Gabriel Kliot, James Larus, Ravi Pandya, and Jorgen Thelin; 30 November 2010
http://research.microsoft.com/apps/pubs/default.aspx?id=141999

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This