The New Era of Intelligent Application Mobility

By Duncan Johnston-Watt

July 19, 2011

Duncan Johnston-Watt, founder & CEO of Cloudsoft describes the concept of intelligent application mobility and what it signals for the new era of being able to seamlessly move applications across clouds and locations.

The dramatic growth in the use of multiple networked computers – often spread across the globe – in order to support business applications makes it compelling for an application to have mobility. For example, the impact of maintaining a server machine is reduced if the application(s) it hosts can be moved to an alternative machine before starting maintenance; disasters can be avoided if an application can be moved off failing machines; network load can be reduced by moving (all or parts of) an application closer to its data; performance can be improved if (all or parts of) an application is moved closer to its users.

Consequently a number of approaches are well established for achieving application mobility. For example, infrastructure virtualization vendors offer application mobility by moving virtual-machines between physical machines (VMware and IBM both refer to this as “live application mobility” 1). Distributed caching vendors facilitate mobility via the data tier2.

However these approaches are only partially effective. The “all-or-nothing” approach of moving entire virtual machines around, especially across wide-area networks, is expensive and slow.  The complex co-ordination of data across distributed caches will often fatally compromise performance and/or integrity, especially for high throughput systems or again where wide-area networks are involved. Instead what’s needed is a far more agile form of application mobility, and one that’s far better suited to the cloud generation.

What is Intelligent Application Mobility?

Intelligent Application Mobility enables business applications to dynamically distribute themselves as needed across multiple machines, locations, and clouds – while they are still running and under the full control of user-defined policies.
Intelligent Application Mobility achieves this by:

–    creating an all-software overlay network (on top of, and with no change to, existing networks)  that dynamically spans machines, locations and clouds as needed to form an Elastic Process Fabric

–    activating applications as fine-grained segments that can flow across the Elastic Process Fabric as needed

–    using policies combined with real-time monitoring to continually optimize segment deployment – for example to ensure that each segment is in the right location to deliver best performance

What types of applications need Intelligent Application Mobility?

It’s probably fair to say that most types of application would benefit to some extent from Intelligent Application Mobility: a self-optimizing application with real-time elasticity and that can near-instantly move itself out of harm’s way will always be advantageous. However there are particular types of application for which the approach is compelling.

Applications that execute business transactions are difficult to scale and distribute as they must maintain consistency and integrity when changes are made to data. Maintaining these constraints is rarely a problem when data contention and transaction volumes are low but challenges quickly emerge as business applications scale-out, particularly where applications involve wide area networks. Traditional approaches to solving scalability challenges include statically partitioning an application across multiple resources, replicating and synchronising multiple instance of the application, and the prevailing vogue of “stateless programming”.

The use of “stateless applications” is particularly interesting as ‘received wisdom’ deems that this approach is essential for cloud deployments: by removing application state from the server tier it doesn’t matter which instance of a server handles any given request, so “instance-on-demand” is available whereby you can spin up and spin down as many instances of the server as you want.

However so-called stateless approaches simply delegate the management of data contention to the data tier, which invariably makes the application less efficient: all necessary state has to be fetched from the data tier prior to servicing each request; any changes to business state must be mediated by the data tier; and all state must be given back to the data tier after each request. Consequently what would be simple and lightweight to achieve in a stateful process now becomes more complex and long-winded in a stateless process.

So the sweet-spots for Intelligent Application Mobility include any or all of the following characteristics:

–    distribution across multiple machines, locations or clouds

–    high volumes of transactions

–    volatile or unpredictable workloads

How is it used?

The capabilities that make up Intelligent Application Mobility, as discussed above, are exactly the kind of capabilities that middleware is intended to implement and make available as a service to developers. And with the availability of development frameworks such as Spring (from SpringSource) and  Seam (from Red Hat), this type of middleware can now be all-but completely hidden from the developer.  Consequently the main requirement for using Intelligent Application Mobility is to ensure that your applications are designed in a way that allows their deployment as fine-grained segments. For example, Microsoft actually calls these fine-grained segments “grains” and puts them at the heart of their “Framework for Cloud Computing”3.

One of the key advantages of encapsulating Intelligent Application Mobility in middleware in this way is that the developer can now, for the first time, code completely scale-agnostic, distribution-agnostic, and cloud-agnostic applications. Development returns to the simplicity of coding just the business logic and making method calls in order to use another service – the Intelligent Application Mobility middleware takes care of scaling, distribution and management issues at run-time.

About the Author

Duncan Johnston-Watt (Founder & Chief Executive Officer) is a serial entrepreneur and industry visionary with over twenty years experience in the software industry. Immediately prior to founding Cloudsoft Duncan was CTO at Enigmatec Corporation, the enterprise data center automation company he founded in 2001.  

A Computerworld Smithsonian Laureate for his pioneering work introducing Java Enterprise to financial services, Duncan holds an MSc in Computation from Oxford University and a BA in Mathematics and Philosophy from Leeds University

REFERENCES

1.    

“AIX 6 Workload Partition and Live Application Mobility”
http://www.ibm.com/developerworks/aix/library/au-wpar/index.html

“VMWare and F5 Announce Collaboration for Cloud Live Application Mobility”
http://news.softpedia.com/news/VMWare-and-F5-Announce-Collaboration-for-Cloud-Live-Application-Mobility-120583.shtml

“Enhance Business Continuance with Application Mobility Across Data Centers”
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9402/white_paper_c11-591960.pdf

2.

NetApp DataMotion
http://www.netapp.com/us/products/platform-os/datamotion.html

“What Is an Enterprise Data Fabric?”
http://community.gemstone.com/pages/viewpage.action?pageId=6032133

Scaleout Geoserver
http://www.scaleoutsoftware.com/products/product-extensions/scaleout-geoserver/

3.

“Orleans: A Framework for Cloud Computing” by Sergey Bykov, Alan Geller, Gabriel Kliot, James Larus, Ravi Pandya, and Jorgen Thelin; 30 November 2010
http://research.microsoft.com/apps/pubs/default.aspx?id=141999

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This