IBM Demos Record-Breaking Parallel File System Performance

By Michael Feldman

July 22, 2011

A research group at IBM has come up with a prototype parallel storage system that they claim is an order of magnitude faster than anything demonstrated before. Using a souped-up version of IBM’s General Parallel File System (GPFS) and a set of Violin Memory’s solid-state storage arrays, the system was able to scan 10 billion files in 43 minutes. They say that’s 37 times faster than the last time IBM topped out GPFS performance in 2007.

The idea behind 10-billion files scans is demonstrate GPFS can keep pace with the enormous flood of data that organizations are amassing. According to IDC, there will be 60 exabytes of digitized data this year and these data stores are expected to increase 60 percent per year. In a nutshell, we’re heading for a zettabyte world.

But it’s not just the aggregate size of storage. Individual businesses and government organizations will soon be expected to actively manage 10 to 100 billion files in a single system. The HPCS DARPA program requires a trillion files in a single system.

That’s certainly beyond the capabilities of storage systems today. Even parallel file systems designed for extreme scalability, like GPFS and Lustre currently top out at about 2 billion files. But the limit is not storage capacity, it’s performance.

While hard drive capacity is increasing at about 25 to 40 percent per year, performance is more in the range of 5 to 10 percent. That’s a problem for all types of storage I/O, but especially for operations on metadata. Metadata is the information that describes file attributes, like name, size, data type, permissions, etc. This information, while small in size, has to be accessed often and quickly — basically every time you do something with a file. When you have billions of files being actively managed, the metadata becomes a choke point.

Typically metadata itself doesn’t require lots of capacity. To store the attributes for 10 billion files, you only need four 2TB disks; they just aren’t fast enough for this level of metadata processing. To get the needed I/O bandwidth, you’d actually need around 200 disk drives. (According to IBM, their 2007 scanning demo of 1 billion files under GPFS required 20 drives.) Using lots of disks to aggregate I/O for metadata is a rather inefficient approach, considering the amount of power, cooling, floor space and system administration associated with disk arrays.

The obvious solution is solid-state storage, and that is indeed what the IBM researchers used for their demo this week. In this case, they used hardware from Violin Memory, a maker of flash storage arrays. According to the IBM researchers, the Violin gear provided the attributes needed for the extreme levels of file scan performance: high bandwidth; low I/O access time, with good transaction rate at medium sized blocks; sustained performance with mixing different I/O access patterns; multiple access paths to shared storage, and reliable data protection in case of NAND failure.

When I asked the IBM team why they opted for Violin in preference to other flash memory offerings, they told me the Violin storage met all of these requirements as well or better than any other SSD approach they had seen. “For example, SSDs on a PCI-e card will not address the high availability requirement unless it replicates with another device,” they said. “This will effectively increase the solution cost. Many SSDs we sampled and evaluated do not sustain performance when mixing different I/O access patterns.”

The storage setup for the demo consisted of four Violin Memory 3205 arrays, with a total raw capacity of 10 TB (7.2 GB usable), and aggregate I/O bandwidth of 5 GB/second. The four arrays can deliver on the order of a million IOPS with 4K blocks, with a typical write latency of 20us and read latency of 90us.

Driving the storage were ten IBM 3650 M2 dual-socket x86 servers, each with 32 GB of memory. The 3650 cluster was connected with InfiniBand, with the Violin boxes hooked to the servers via PCIe.

All 6.5 TB of metadata for the 10 billion files was mapped to the four 3U Violin arrays. No disk drives were required since, for demonstration purposes, the files themselves contained no data. To provide a more or less typical file system environment, the files were spread out across 10 million directories. Scaled up to 100 billion files, the researchers estimated that just half a rack of flash storage arrays would be needed for the metadata, compared to five to ten racks of disks required for the same performance.

It’s noteworthy that the researchers selected Violin gear for this particular demo, especially considering that IBM is currently shipping Fusion-io PCI-based flash drives with its System X servers. Even though the work describe here was just a research project, with no timetable for commercialization, it’s not too big a stretch to imagine future IBM systems with Violin technology folded in. The larger lesson though is that solid-state storage is likely to figure prominently in future storage system, IBM or otherwise, when billions of files is are in the mix.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Google’s Bill Magro, an HPCwire Person to Watch in 2021

June 11, 2021

Last Fall Bill Magro joined Google as CTO of HPC, a newly created position, after two decades at Intel, where he was responsible for the company's HPC strategy. This interview was conducted by email at the beginning of A Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their correspondingly powerful cooling systems. As a result, these Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, with the U.K.-based Cambridge Quantum Computing (CQC), which Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled its in-person component with a couple months’ notice, ISC Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

AWS Solution Channel

Building highly-available HPC infrastructure on AWS

Reminder: You can learn a lot from AWS HPC engineers by subscribing to the HPC Tech Short YouTube channel, and following the AWS HPC Blog channel. Read more…

Space Weather Prediction Gets a Supercomputing Boost

June 9, 2021

Solar winds are a hot topic in the HPC world right now, with supercomputer-powered research spanning from the Princeton Plasma Physics Laboratory (which used Oak Ridge’s Titan system) to University College London (which used resources from the DiRAC HPC facility). One of the larger... Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their c Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

What is Thermodynamic Computing and Could It Become Important?

June 3, 2021

What, exactly, is thermodynamic computing? (Yes, we know everything obeys thermodynamic laws.) A trio of researchers from Microsoft, UC San Diego, and Georgia Tech have written an interesting viewpoint in the June issue... Read more…

AMD Introduces 3D Chiplets, Demos Vertical Cache on Zen 3 CPUs

June 2, 2021

At Computex 2021, held virtually this week, AMD showcased a new 3D chiplet architecture that will be used for future high-performance computing products set to Read more…

Nvidia Expands Its Certified Server Models, Unveils DGX SuperPod Subscriptions

June 2, 2021

Nvidia is busy this week at the virtual Computex 2021 Taipei technology show, announcing an expansion of its nascent Nvidia-certified server program, a range of Read more…

Using HPC Cloud, Researchers Investigate the COVID-19 Lab Leak Hypothesis

May 27, 2021

At the end of 2019, strange pneumonia cases started cropping up in Wuhan, China. As Wuhan (then China, then the world) scrambled to contain what would, of cours Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire