IBM Demos Record-Breaking Parallel File System Performance

By Michael Feldman

July 22, 2011

A research group at IBM has come up with a prototype parallel storage system that they claim is an order of magnitude faster than anything demonstrated before. Using a souped-up version of IBM’s General Parallel File System (GPFS) and a set of Violin Memory’s solid-state storage arrays, the system was able to scan 10 billion files in 43 minutes. They say that’s 37 times faster than the last time IBM topped out GPFS performance in 2007.

The idea behind 10-billion files scans is demonstrate GPFS can keep pace with the enormous flood of data that organizations are amassing. According to IDC, there will be 60 exabytes of digitized data this year and these data stores are expected to increase 60 percent per year. In a nutshell, we’re heading for a zettabyte world.

But it’s not just the aggregate size of storage. Individual businesses and government organizations will soon be expected to actively manage 10 to 100 billion files in a single system. The HPCS DARPA program requires a trillion files in a single system.

That’s certainly beyond the capabilities of storage systems today. Even parallel file systems designed for extreme scalability, like GPFS and Lustre currently top out at about 2 billion files. But the limit is not storage capacity, it’s performance.

While hard drive capacity is increasing at about 25 to 40 percent per year, performance is more in the range of 5 to 10 percent. That’s a problem for all types of storage I/O, but especially for operations on metadata. Metadata is the information that describes file attributes, like name, size, data type, permissions, etc. This information, while small in size, has to be accessed often and quickly — basically every time you do something with a file. When you have billions of files being actively managed, the metadata becomes a choke point.

Typically metadata itself doesn’t require lots of capacity. To store the attributes for 10 billion files, you only need four 2TB disks; they just aren’t fast enough for this level of metadata processing. To get the needed I/O bandwidth, you’d actually need around 200 disk drives. (According to IBM, their 2007 scanning demo of 1 billion files under GPFS required 20 drives.) Using lots of disks to aggregate I/O for metadata is a rather inefficient approach, considering the amount of power, cooling, floor space and system administration associated with disk arrays.

The obvious solution is solid-state storage, and that is indeed what the IBM researchers used for their demo this week. In this case, they used hardware from Violin Memory, a maker of flash storage arrays. According to the IBM researchers, the Violin gear provided the attributes needed for the extreme levels of file scan performance: high bandwidth; low I/O access time, with good transaction rate at medium sized blocks; sustained performance with mixing different I/O access patterns; multiple access paths to shared storage, and reliable data protection in case of NAND failure.

When I asked the IBM team why they opted for Violin in preference to other flash memory offerings, they told me the Violin storage met all of these requirements as well or better than any other SSD approach they had seen. “For example, SSDs on a PCI-e card will not address the high availability requirement unless it replicates with another device,” they said. “This will effectively increase the solution cost. Many SSDs we sampled and evaluated do not sustain performance when mixing different I/O access patterns.”

The storage setup for the demo consisted of four Violin Memory 3205 arrays, with a total raw capacity of 10 TB (7.2 GB usable), and aggregate I/O bandwidth of 5 GB/second. The four arrays can deliver on the order of a million IOPS with 4K blocks, with a typical write latency of 20us and read latency of 90us.

Driving the storage were ten IBM 3650 M2 dual-socket x86 servers, each with 32 GB of memory. The 3650 cluster was connected with InfiniBand, with the Violin boxes hooked to the servers via PCIe.

All 6.5 TB of metadata for the 10 billion files was mapped to the four 3U Violin arrays. No disk drives were required since, for demonstration purposes, the files themselves contained no data. To provide a more or less typical file system environment, the files were spread out across 10 million directories. Scaled up to 100 billion files, the researchers estimated that just half a rack of flash storage arrays would be needed for the metadata, compared to five to ten racks of disks required for the same performance.

It’s noteworthy that the researchers selected Violin gear for this particular demo, especially considering that IBM is currently shipping Fusion-io PCI-based flash drives with its System X servers. Even though the work describe here was just a research project, with no timetable for commercialization, it’s not too big a stretch to imagine future IBM systems with Violin technology folded in. The larger lesson though is that solid-state storage is likely to figure prominently in future storage system, IBM or otherwise, when billions of files is are in the mix.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. The news follows HPE’s acquisition nearly three years ago o Read more…

By Doug Black & Tiffany Trader

China Establishes Seventh National Supercomputing Center

May 16, 2019

Chinese media is reporting that China will construct a new National Supercomputer Center in Zhengzhou, in central China's Henan Province. The new Zhengzhou facility will house a 100-petaflops supercomputer and will be ta Read more…

By Staff report

Interview with 2019 Person to Watch Ken King

May 16, 2019

Today, as the final installment of our HPCwire People to Watch focus series, we present our interview with Ken King, general manager of OpenPOWER for the IBM Systems Group. Ken is responsible for building and managing t Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Autonomous Vehicles: New challenges for the CAE Data Center

Managing infrastructure complexity in the age of AI

When most of us hear the term autonomous vehicles, we conjure up images of driverless Waymos or robotic transport trucks driving long-haul highway routes. Read more…

What’s New in HPC Research: Image Classification, Crowd Computing, Genome Informatics & More

May 15, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

ASC19: NTHU Returns to Glory

May 11, 2019

As many of you Student Cluster Competition fanatics know by now, Taiwan’s National Tsing Hua University (NTHU) won the gold medal at the recently concluded AS Read more…

By Dan Olds

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

Ten Great Reasons to Build the 1.5 Exaflops Frontier

May 7, 2019

It’s perhaps obvious that the fundamental reason for building expensive exascale computers is to drive science and industry forward, realizing the resulting b Read more…

By John Russell

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This