IBM Demos Record-Breaking Parallel File System Performance

By Michael Feldman

July 22, 2011

A research group at IBM has come up with a prototype parallel storage system that they claim is an order of magnitude faster than anything demonstrated before. Using a souped-up version of IBM’s General Parallel File System (GPFS) and a set of Violin Memory’s solid-state storage arrays, the system was able to scan 10 billion files in 43 minutes. They say that’s 37 times faster than the last time IBM topped out GPFS performance in 2007.

The idea behind 10-billion files scans is demonstrate GPFS can keep pace with the enormous flood of data that organizations are amassing. According to IDC, there will be 60 exabytes of digitized data this year and these data stores are expected to increase 60 percent per year. In a nutshell, we’re heading for a zettabyte world.

But it’s not just the aggregate size of storage. Individual businesses and government organizations will soon be expected to actively manage 10 to 100 billion files in a single system. The HPCS DARPA program requires a trillion files in a single system.

That’s certainly beyond the capabilities of storage systems today. Even parallel file systems designed for extreme scalability, like GPFS and Lustre currently top out at about 2 billion files. But the limit is not storage capacity, it’s performance.

While hard drive capacity is increasing at about 25 to 40 percent per year, performance is more in the range of 5 to 10 percent. That’s a problem for all types of storage I/O, but especially for operations on metadata. Metadata is the information that describes file attributes, like name, size, data type, permissions, etc. This information, while small in size, has to be accessed often and quickly — basically every time you do something with a file. When you have billions of files being actively managed, the metadata becomes a choke point.

Typically metadata itself doesn’t require lots of capacity. To store the attributes for 10 billion files, you only need four 2TB disks; they just aren’t fast enough for this level of metadata processing. To get the needed I/O bandwidth, you’d actually need around 200 disk drives. (According to IBM, their 2007 scanning demo of 1 billion files under GPFS required 20 drives.) Using lots of disks to aggregate I/O for metadata is a rather inefficient approach, considering the amount of power, cooling, floor space and system administration associated with disk arrays.

The obvious solution is solid-state storage, and that is indeed what the IBM researchers used for their demo this week. In this case, they used hardware from Violin Memory, a maker of flash storage arrays. According to the IBM researchers, the Violin gear provided the attributes needed for the extreme levels of file scan performance: high bandwidth; low I/O access time, with good transaction rate at medium sized blocks; sustained performance with mixing different I/O access patterns; multiple access paths to shared storage, and reliable data protection in case of NAND failure.

When I asked the IBM team why they opted for Violin in preference to other flash memory offerings, they told me the Violin storage met all of these requirements as well or better than any other SSD approach they had seen. “For example, SSDs on a PCI-e card will not address the high availability requirement unless it replicates with another device,” they said. “This will effectively increase the solution cost. Many SSDs we sampled and evaluated do not sustain performance when mixing different I/O access patterns.”

The storage setup for the demo consisted of four Violin Memory 3205 arrays, with a total raw capacity of 10 TB (7.2 GB usable), and aggregate I/O bandwidth of 5 GB/second. The four arrays can deliver on the order of a million IOPS with 4K blocks, with a typical write latency of 20us and read latency of 90us.

Driving the storage were ten IBM 3650 M2 dual-socket x86 servers, each with 32 GB of memory. The 3650 cluster was connected with InfiniBand, with the Violin boxes hooked to the servers via PCIe.

All 6.5 TB of metadata for the 10 billion files was mapped to the four 3U Violin arrays. No disk drives were required since, for demonstration purposes, the files themselves contained no data. To provide a more or less typical file system environment, the files were spread out across 10 million directories. Scaled up to 100 billion files, the researchers estimated that just half a rack of flash storage arrays would be needed for the metadata, compared to five to ten racks of disks required for the same performance.

It’s noteworthy that the researchers selected Violin gear for this particular demo, especially considering that IBM is currently shipping Fusion-io PCI-based flash drives with its System X servers. Even though the work describe here was just a research project, with no timetable for commercialization, it’s not too big a stretch to imagine future IBM systems with Violin technology folded in. The larger lesson though is that solid-state storage is likely to figure prominently in future storage system, IBM or otherwise, when billions of files is are in the mix.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 13), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue’s max capacity and doubling 2016 attendee numbers), the one Read more…

By Tiffany Trader

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 13), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

  • arrow
  • Click Here for More Headlines
  • arrow
Share This