UCLA Selects Modular Home for Shared HPC

By Nicole Hemsoth

July 25, 2011

Purdue University made waves last year with its selection of HP’s POD containerized datacenter, which was hauled in to help them cope with a power inefficiencies stemming from an existing brick and mortar datacenter on campus.

The university set the proof point for cost and efficiency of modular datacenters, with their associate VP of Academic Technologies, John Campbell claiming that for 60% of the cost of a collocation facility the university could install a POD.

The selling point for containerized datacenters in general is that they come fully configured (although customizations can be made) with all the cables, power, cooling and racks in place and ready to roll. For Purdue, the savings mounted in the arenas of colo leasing, cutting back on staff to man datacenters, extension of on-campus networks, reduced power costs—which came, in part, because of the university’s own power plant.

UCLA announced this week that it has climbed aboard the containerized datacenter bandwagon with its head of academic technology services and managing director for the Institute of Digital Research and Education, Bill Labate, extolling the benefits of containerized HPC.

Labate’s group is responsible for providing university research cyberinfrastructure via its shared cluster system, which allows researchers who want to build their own clusters to instead buy compute nodes that Labate’s team integrates into the shared cluster. This allows the team to make the cycles available for over 170 research projects, from particle physics to genomcis and beyond.

As the need for cycles grew steadily, Labate saw a need for new equipment. He said that they had an existing datacenter that was a target for retrofitting, but when the team examined the possibility, it was clear there would be power and cooling limitations even though the space itself would have allowed room for growth. Labate’s team was able to secure $4.4 million to retrofit the existing data center, but when they received their final estimate for $7.2 million for the project, the shortfall led Labate down a different path.

Since it was not possible to scale down the potential retrofitted datacenter to remain within budget constraints, the possibilities of modular datacenters entered the picture. Labate said that to scale down to the level needed to suit the allotted funding would not have served even intermediate needs. Furthermore, since the goal of this undertaking was to enhance growth potential for the shared cluster resources, the retrofit would have been a waste of effort and money.

Labate approached UC San Diego for opinions about their experiences with a Sun-Oracle Black Box containerized solution, but found that they faced challenges with the U-shaped layout.  UCSD told him that one thing they did not like was that the Black Box required specialized equipment and brought logistical challenges when it came to replacing and maintaining hardware since entire sections needed to be pulled out for fixes. This would not suit UCLA’s needs since, again, their system of buying new hardware was based on price-performance options among vendors, thus requiring flexibility to swap components based on what individual vendors offered. Besides, the Black Box solution was only a 20-foot container, and Labate knew that he needed to be able to power more cycles than the smaller Sun-Oracle solution could provide.

Labate’s team eventually settled on HP due to its high density, which was a good fit for what they were trying to accomplish in terms of providing as many cycles as possible. Other vendors they evaluated offered attractive density but Labate said there was not enough flexibility–that they needed to be able to grow with solutions that weren’t specialized for a particular container environment.

Before choosing the high-density, 40×8 feet POD container from HP, the team also looked at options from Dell, Rackable and as noted previously, the Sun-Oracle Black Box, which Labate says was the first to be struck from the list due to the size and shape limitations. He did not go into detail about the reasons behind abandoning the Dell and Rackable solutions, other than to say that for their specific needs, density was the deciding factor. Still, he noted that there were many similarities between the HP, Dell, IBM, and Rackable solutions—the choice simply came down to price, performance, flexibility of equipment solutions, and density.

The site preparations for the container began in October 2010 and moved swiftly until ending in mid-April of 2011. This entailed extending the university’s existing chilled water, power systems and pumps, fiber networks and laying the solid foundation required to support 110,00 pounds of steel and equipment.

Many modular datacenter makers emphasize the quick installation and set-up of their containers, claiming that it can be humming away in a few short weeks. As Labate says, however, anyone who knows anything about datacenters knows that you “can’t just plunk down a datacenter in your backyard and hook into your garden hose.” All told, from site prep to shared cluster bootup the team was looking at several months.

The shared cluster is distributed across campus with one building housing around 300 nodes, another with roughly 500 and now the POD, which packs in over 1500 nodes. His team ran a wide area InfiniBand network throughout, pulling all the nodes onto the same fabric for efficient management. They connected the Ethernet network for storage  traffic, creating what he describes as a “geographic spread out single cluster.”

The team chose to keep the storage resources outside of the POD, in part to protect the valuable applications and results of long runs, but also because the POD has been optimized for compute nodes according to his team’s purpose to deliver shared cluster resources as if it was a single system. He emphasized repeatedly that their needs are specific—they wanted to be able to maximize the number of cycles available for university research.

When asked about usability or performance tradeoffs, Labate was adamant that containers are more efficient and perform for their needs, which again, are focused on providing more compute for the shared HPC cluster. He said that in many ways, the container streamlines their HPC operations by shedding the maintenance and efficiency hassles of brick and mortar. As he noted, “there are no other people in the POD, in fact, we limit our time in there since we want to keep it buttoned up as tight as possible. It’s been freeing, no operators in the pod, no need for anyone to sit in there and monitor—it’s all automated with all the tools we need for monitoring, powering on and off and so forth.”

According to Labate, there were no power and energy consumption problems with their use of POD. He said that compared to one of their brick and mortar datacenters which was operating at 1.5 PUE, the POD was running a steady 1.17 PUE. He claims that this translates into roughly a $200,000 difference in power costs, which represented a secondary but very important consideration as they looked at the POD capabilities.

Despite the lack of wide user adoption of modular datacenters, it was nearly impossible to get Labate to remark on any drawbacks to such solutions. He said that outside of the obvious negative factors, which include working inside small boxes with 36 raging blowers and tight quarters (which his team overcomes by saving fixes inside for once-weekly missions) and the aesthetic problem of having an giant, ugly shipping container fitting in with an artful sense of campus uniformity (an issue he said gave the campus aesthetics folk a few gripes) he can’t imagine traditional datacenters to address growth ever again.

When pressed about what he might warn others about when considering such solutions, Labate said environmental conditions were critical. First, in terms of making sure it is possible to locate the container close to needed power and cooling resources. Also, in terms of actually environment—he said that during a recent conversation with someone in an snow-bound region, he suggested that to avoid preventing access to the container they might need to consider building enclosures or renting indoor space.

Snow might not be a problem for UCLA, but earthquakes certainly are. Labate said this is another important distinction between brick and mortar and containers—while he notes he hasn’t researched his hunch, these massive, solid steel, windowless shipping containers were far likely more structurally sound than any existing traditional datacenter on his campus. Let’s hope he never gets a chance to prove that theory.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, provided a brief but insightful portrait of Nvidia’s rese Read more…

By John Russell

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, Read more…

By John Russell

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This