UCLA Selects Modular Home for Shared HPC

By Nicole Hemsoth

July 25, 2011

Purdue University made waves last year with its selection of HP’s POD containerized datacenter, which was hauled in to help them cope with a power inefficiencies stemming from an existing brick and mortar datacenter on campus.

The university set the proof point for cost and efficiency of modular datacenters, with their associate VP of Academic Technologies, John Campbell claiming that for 60% of the cost of a collocation facility the university could install a POD.

The selling point for containerized datacenters in general is that they come fully configured (although customizations can be made) with all the cables, power, cooling and racks in place and ready to roll. For Purdue, the savings mounted in the arenas of colo leasing, cutting back on staff to man datacenters, extension of on-campus networks, reduced power costs—which came, in part, because of the university’s own power plant.

UCLA announced this week that it has climbed aboard the containerized datacenter bandwagon with its head of academic technology services and managing director for the Institute of Digital Research and Education, Bill Labate, extolling the benefits of containerized HPC.

Labate’s group is responsible for providing university research cyberinfrastructure via its shared cluster system, which allows researchers who want to build their own clusters to instead buy compute nodes that Labate’s team integrates into the shared cluster. This allows the team to make the cycles available for over 170 research projects, from particle physics to genomcis and beyond.

As the need for cycles grew steadily, Labate saw a need for new equipment. He said that they had an existing datacenter that was a target for retrofitting, but when the team examined the possibility, it was clear there would be power and cooling limitations even though the space itself would have allowed room for growth. Labate’s team was able to secure $4.4 million to retrofit the existing data center, but when they received their final estimate for $7.2 million for the project, the shortfall led Labate down a different path.

Since it was not possible to scale down the potential retrofitted datacenter to remain within budget constraints, the possibilities of modular datacenters entered the picture. Labate said that to scale down to the level needed to suit the allotted funding would not have served even intermediate needs. Furthermore, since the goal of this undertaking was to enhance growth potential for the shared cluster resources, the retrofit would have been a waste of effort and money.

Labate approached UC San Diego for opinions about their experiences with a Sun-Oracle Black Box containerized solution, but found that they faced challenges with the U-shaped layout.  UCSD told him that one thing they did not like was that the Black Box required specialized equipment and brought logistical challenges when it came to replacing and maintaining hardware since entire sections needed to be pulled out for fixes. This would not suit UCLA’s needs since, again, their system of buying new hardware was based on price-performance options among vendors, thus requiring flexibility to swap components based on what individual vendors offered. Besides, the Black Box solution was only a 20-foot container, and Labate knew that he needed to be able to power more cycles than the smaller Sun-Oracle solution could provide.

Labate’s team eventually settled on HP due to its high density, which was a good fit for what they were trying to accomplish in terms of providing as many cycles as possible. Other vendors they evaluated offered attractive density but Labate said there was not enough flexibility–that they needed to be able to grow with solutions that weren’t specialized for a particular container environment.

Before choosing the high-density, 40×8 feet POD container from HP, the team also looked at options from Dell, Rackable and as noted previously, the Sun-Oracle Black Box, which Labate says was the first to be struck from the list due to the size and shape limitations. He did not go into detail about the reasons behind abandoning the Dell and Rackable solutions, other than to say that for their specific needs, density was the deciding factor. Still, he noted that there were many similarities between the HP, Dell, IBM, and Rackable solutions—the choice simply came down to price, performance, flexibility of equipment solutions, and density.

The site preparations for the container began in October 2010 and moved swiftly until ending in mid-April of 2011. This entailed extending the university’s existing chilled water, power systems and pumps, fiber networks and laying the solid foundation required to support 110,00 pounds of steel and equipment.

Many modular datacenter makers emphasize the quick installation and set-up of their containers, claiming that it can be humming away in a few short weeks. As Labate says, however, anyone who knows anything about datacenters knows that you “can’t just plunk down a datacenter in your backyard and hook into your garden hose.” All told, from site prep to shared cluster bootup the team was looking at several months.

The shared cluster is distributed across campus with one building housing around 300 nodes, another with roughly 500 and now the POD, which packs in over 1500 nodes. His team ran a wide area InfiniBand network throughout, pulling all the nodes onto the same fabric for efficient management. They connected the Ethernet network for storage  traffic, creating what he describes as a “geographic spread out single cluster.”

The team chose to keep the storage resources outside of the POD, in part to protect the valuable applications and results of long runs, but also because the POD has been optimized for compute nodes according to his team’s purpose to deliver shared cluster resources as if it was a single system. He emphasized repeatedly that their needs are specific—they wanted to be able to maximize the number of cycles available for university research.

When asked about usability or performance tradeoffs, Labate was adamant that containers are more efficient and perform for their needs, which again, are focused on providing more compute for the shared HPC cluster. He said that in many ways, the container streamlines their HPC operations by shedding the maintenance and efficiency hassles of brick and mortar. As he noted, “there are no other people in the POD, in fact, we limit our time in there since we want to keep it buttoned up as tight as possible. It’s been freeing, no operators in the pod, no need for anyone to sit in there and monitor—it’s all automated with all the tools we need for monitoring, powering on and off and so forth.”

According to Labate, there were no power and energy consumption problems with their use of POD. He said that compared to one of their brick and mortar datacenters which was operating at 1.5 PUE, the POD was running a steady 1.17 PUE. He claims that this translates into roughly a $200,000 difference in power costs, which represented a secondary but very important consideration as they looked at the POD capabilities.

Despite the lack of wide user adoption of modular datacenters, it was nearly impossible to get Labate to remark on any drawbacks to such solutions. He said that outside of the obvious negative factors, which include working inside small boxes with 36 raging blowers and tight quarters (which his team overcomes by saving fixes inside for once-weekly missions) and the aesthetic problem of having an giant, ugly shipping container fitting in with an artful sense of campus uniformity (an issue he said gave the campus aesthetics folk a few gripes) he can’t imagine traditional datacenters to address growth ever again.

When pressed about what he might warn others about when considering such solutions, Labate said environmental conditions were critical. First, in terms of making sure it is possible to locate the container close to needed power and cooling resources. Also, in terms of actually environment—he said that during a recent conversation with someone in an snow-bound region, he suggested that to avoid preventing access to the container they might need to consider building enclosures or renting indoor space.

Snow might not be a problem for UCLA, but earthquakes certainly are. Labate said this is another important distinction between brick and mortar and containers—while he notes he hasn’t researched his hunch, these massive, solid steel, windowless shipping containers were far likely more structurally sound than any existing traditional datacenter on his campus. Let’s hope he never gets a chance to prove that theory.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Battle Brews over Trump Intentions for Funding Science

February 27, 2017

The battle over science funding – how much and for what kinds of science – Read more…

By John Russell

Google Gets First Dibs on New Skylake Chips

February 27, 2017

As part of an ongoing effort to differentiate its public cloud services, Google made good this week on its intention to bring custom Xeon Skylake chips from Intel Corp. Read more…

By George Leopold

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPE Extreme Performance Solutions

Manufacturers Reaping the Benefits of Remote Visualization

Today’s manufacturers are operating in an ever-changing atmosphere, and finding new ways to boost productivity has never been more vital.

This is why manufacturers are ramping up their investments in high performance computing (HPC), a trend which has helped give rise to the “connected factory” and Industrial Internet of Things (IIoT) concepts that are proliferating throughout the industry today. Read more…

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This