QLogic Makes Case for Leaner, HPC-Centric InfiniBand

By Michael Feldman

July 26, 2011

It was a bit of a surprise when QLogic beat out Mellanox as the interconnect vendor on the National Nuclear Security Administration’s (NNSA’s) Tri-Lab Linux Capacity Cluster 2 contract in June. Not only was Mellanox the incumbent on the original Tri-Lab contract, but it is widely considered to have the more complete solution set for InfiniBand. Nevertheless, QLogic managed to win the day, and did so with somewhat unconventional technologies.

One of these is QLogic’s TrueScale InfiniBand architecture. TrueScale uses an on-load approach to networking in which the lion’s share of packet processing is passed off to the CPUs on the servers. That allows host channel adapters (HCAs) based on TrueScale chips to be much simpler in design than those used to offload those functions (in particular Mellanox ConnectX-based adapters), but at the cost of using CPU resources to do network tasks like packet processing.

That’s why offloading has been the traditional answer for computationally-burdened HPC systems, not just for lower-level packet manipulation, but for MPI processing as well. And it makes perfect sense. The less communication processing the CPUs have to do, the more time they can spend on the application.

But it doesn’t always work out that way in the real world. Especially for certain types of codes where the bottleneck is communication, rather than computation, being able to tap into host CPUs can be an advantage. This is especially true in modern-day clusters, which are filled with core-rich CPUs, not all of which can be fully utilized 100 percent of the time. In these situations, on-loading can exploit essentially free cycles and in a manner that scales naturally with the size of the cluster.

But even where the application is more computationally intensive, QLogic maintains that its on-load approach will still outrun Mellanox’s offloading approach. They attribute that to the other critical piece of their InfiniBand technology: Performance Scaled Messaging (PSM). PSM is QLogic’s communication library that it touts as their lightweight answer to InfiniBand Verbs. The latter was defined by the original InfiniBand spec designers to provide a general-purpose communication API that assumed RDMA and some sort of offloading in the network adapter.

QLogic came up with PSM as a leaner, meaner interface designed explicitly for high performance computing. And now that PSM has been turned over as open source and incorporated into the OpenFabrics Enterprise Distribution (OFED), the software can now be embraced by the wider HPC community. Like Verbs, PSM is supported in all major MPI implementations.

According to Joseph Yaworski, director of HPC Product and Solution Marketing at QLogic, PSM is what makes their InfiniBand offering so efficient for HPC environments. Both PSM and Verbs run on the server CPUs, but unlike Verbs, which was originally designed for handling of I/O requests in a datacenter environment (and later modified to support message passing when HPC became the primary user of InfiniBand), PSM was purpose-built for MPI from the start.

The difference is the nature of the communication for the two application areas. While I/O usually entails relatively large blocks of data to be sent across a limited number of nodes, MPI communication often requires tens of millions of relatively small messages to be passed between hundreds or even thousands of CPU cores.

“Verbs, due to its poor semantic match between MPI’s message passing requirements and the structure of the Verbs implementation, means that a heavy weight protocol must be traversed to handle each message,” says Yaworski. “This approach puts a significant burden on the host CPU and severely limits network performance, especially as a cluster is scaled.

QLogic points to a couple of ANSYS FLUENT benchmarks to show its InfiniBand performance on these common CFD codes. The tests were run on a 384-core server cluster, made up of 32 computational nodes and one NFS server node. Each server consisted of dual quad-core Intel Xeon 5670 “Westmere” 2.93GHz processors and 24GB of memory. Platform MPI was used with the MPI stats option turned on to collect the statistics for communications and CPU utilization. According to Yaworski, the same object code was used for the application for both on-loading and offloading runs.

The first test was the Eddy 417K cell model, which is relatively light on the computation side, but heavy on the communications. For this application, QLogic says on-loading with PSM delivers 366 percent more application performance than offloading with Verbs, claiming the difference is the more efficient use of the CPUs. With this model, just 76 percent of the CPU cycles were used for communication with on-loading/PSM versus 95 percent for offloading/Verbs.

The second FLUENT test case is the Truck 111M cell model, which is much more computationally intensive. In this case, the QLogic solution runs just 20 percent faster, since the overall communication burden is much less, although still taking up 53 percent of the CPU for on-loading with PSM and 61 percent for offloading with Verbs.

As one might suspect, Mellanox is having none of this. According to Gilad Shainer, senior director of HPC and Technical Computing at Mellanox, the offloading critique is unfounded, and benchmark tests such as the ones QLogic touts can be easily manipulated for the benefit particular outcomes. From his perspective, QLogic’s positioning of their InfiniBand on-load technology is a marketing ploy to make up for the lack of sophistication in the TrueScale silicon.

Shainer maintains that the rationale for offloading is straightforward: to be able to use system resources for what they do best, in this case, CPUs for computation and HCAs for network processing. According to him, that’s why most adapters use some form of offloading today, whether to support InfiniBand and MPI communication, Fibre Channel over Ethernet, TCP offload, or what have you.

On-loading also makes RDMA (Remote Direct Memory Access) impossible, which means data must be buffered by the CPU in certain situations, instead of being directly mapped by the HCA. In those cases, data transfer latencies are much higher — up to 7 times higher according to Mellanox — and throughput is lower.

This is especially true when InfiniBand is used to connect storage. Shainer says for file system applications like Lustre and GPFS, you can lose up to half the I/O bandwidth without RDMA (Yaworski concedes that Mellanox is currently better for InfiniBand-based storage but says QLogic is within “spitting distance” of its competitor on I/O performance.) Shainer also says RDMA gives Mellanox’s GPUDirect implementation a decided performance advantage, a claim disputed by QLogic.

On the other hand, says Shainer, just because the offload capability is on-chip, there is no requirement to use it. Mellanox supports network transport and MPI offload capabilities, but the user is able to switch those features on and off if so desired. In that sense, he points out, offloading is really a superset of on-loading.

Nevertheless, recent experience on some large clusters at Lawrence Livermore National Lab (LLNL) appear to back QLogic’s claims of scalability and performance, at least on some of the lab’s simulation codes. On Sierra, a 1,944-node HPC cluster at LLNL connected with QLogic InfiniBand adapters and switches, a multiphysics code was able to achieve 1 to 2 us of MPI latency across 24,000 cores and attain 27 to 30 million messages per second. Matt Leininger, deputy for advanced technology projects at LLNL, said that Sierra demonstrated better scaling than any of their other clusters, not to mention their older Blue Gene and Cray XT supercomputers. Leininger attributed the superior performance to the QLogic network.

At LLNL, QLogic InfiniBand now connects more than 4,000 nodes spread across Sierra and three smaller HPC clusters. The lab’s positive experience with the technology was almost certainly a factor that led the NNSA to select QLogic QDR InfiniBand over the Mellanox offering on the second Tri-Labs contract announced. With the win, QLogic gear will now be firmly entrenched at Sandia National Laboratories and Los Alamos National Laboratory, the other two labs in the Tri-Labs complex.

While Mellanox will continue to be a market leader in InfiniBand for the foreseeable future, QLogic may have found a technological strategy that enables it to expand its market share. Continuing to exploit that strategy is going to be tough going, given its competitor’s dominance in the InfiniBand market. But in Mellanox’s more all-encompassing RDMA offerings and QLogic’s more bare-bones HPC approach, the market may have found the differentiation needed to keep both InfiniBand product sets viable.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

FPGA-Based Genome Processor Bundles Storage

January 6, 2017

Bio-processor developer Edico Genome is collaborating with storage specialist Dell EMC to bundle computing and storage for analyzing gene-sequencing data. Read more…

By George Leopold

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

Addison Snell: The ‘Wild West’ of HPC Disaggregation

December 16, 2016

We caught up with Addison Snell, CEO of HPC industry watcher Intersect360, at SC16 last month, and Snell had his expected, extensive list of insights into trends driving advanced-scale technology in both the commercial and research sectors. Read more…

By Doug Black

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Deep Learning Paves Way for Better Diagnostics

September 19, 2016

Stanford researchers are leveraging GPU-based machines in the Amazon EC2 cloud to run deep learning workloads with the goal of improving diagnostics for a chronic eye disease, called diabetic retinopathy. The disease is a complication of diabetes that can lead to blindness if blood sugar is poorly controlled. It affects about 45 percent of diabetics and 100 million people worldwide, many in developing nations. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This