QLogic Makes Case for Leaner, HPC-Centric InfiniBand

By Michael Feldman

July 26, 2011

It was a bit of a surprise when QLogic beat out Mellanox as the interconnect vendor on the National Nuclear Security Administration’s (NNSA’s) Tri-Lab Linux Capacity Cluster 2 contract in June. Not only was Mellanox the incumbent on the original Tri-Lab contract, but it is widely considered to have the more complete solution set for InfiniBand. Nevertheless, QLogic managed to win the day, and did so with somewhat unconventional technologies.

One of these is QLogic’s TrueScale InfiniBand architecture. TrueScale uses an on-load approach to networking in which the lion’s share of packet processing is passed off to the CPUs on the servers. That allows host channel adapters (HCAs) based on TrueScale chips to be much simpler in design than those used to offload those functions (in particular Mellanox ConnectX-based adapters), but at the cost of using CPU resources to do network tasks like packet processing.

That’s why offloading has been the traditional answer for computationally-burdened HPC systems, not just for lower-level packet manipulation, but for MPI processing as well. And it makes perfect sense. The less communication processing the CPUs have to do, the more time they can spend on the application.

But it doesn’t always work out that way in the real world. Especially for certain types of codes where the bottleneck is communication, rather than computation, being able to tap into host CPUs can be an advantage. This is especially true in modern-day clusters, which are filled with core-rich CPUs, not all of which can be fully utilized 100 percent of the time. In these situations, on-loading can exploit essentially free cycles and in a manner that scales naturally with the size of the cluster.

But even where the application is more computationally intensive, QLogic maintains that its on-load approach will still outrun Mellanox’s offloading approach. They attribute that to the other critical piece of their InfiniBand technology: Performance Scaled Messaging (PSM). PSM is QLogic’s communication library that it touts as their lightweight answer to InfiniBand Verbs. The latter was defined by the original InfiniBand spec designers to provide a general-purpose communication API that assumed RDMA and some sort of offloading in the network adapter.

QLogic came up with PSM as a leaner, meaner interface designed explicitly for high performance computing. And now that PSM has been turned over as open source and incorporated into the OpenFabrics Enterprise Distribution (OFED), the software can now be embraced by the wider HPC community. Like Verbs, PSM is supported in all major MPI implementations.

According to Joseph Yaworski, director of HPC Product and Solution Marketing at QLogic, PSM is what makes their InfiniBand offering so efficient for HPC environments. Both PSM and Verbs run on the server CPUs, but unlike Verbs, which was originally designed for handling of I/O requests in a datacenter environment (and later modified to support message passing when HPC became the primary user of InfiniBand), PSM was purpose-built for MPI from the start.

The difference is the nature of the communication for the two application areas. While I/O usually entails relatively large blocks of data to be sent across a limited number of nodes, MPI communication often requires tens of millions of relatively small messages to be passed between hundreds or even thousands of CPU cores.

“Verbs, due to its poor semantic match between MPI’s message passing requirements and the structure of the Verbs implementation, means that a heavy weight protocol must be traversed to handle each message,” says Yaworski. “This approach puts a significant burden on the host CPU and severely limits network performance, especially as a cluster is scaled.

QLogic points to a couple of ANSYS FLUENT benchmarks to show its InfiniBand performance on these common CFD codes. The tests were run on a 384-core server cluster, made up of 32 computational nodes and one NFS server node. Each server consisted of dual quad-core Intel Xeon 5670 “Westmere” 2.93GHz processors and 24GB of memory. Platform MPI was used with the MPI stats option turned on to collect the statistics for communications and CPU utilization. According to Yaworski, the same object code was used for the application for both on-loading and offloading runs.

The first test was the Eddy 417K cell model, which is relatively light on the computation side, but heavy on the communications. For this application, QLogic says on-loading with PSM delivers 366 percent more application performance than offloading with Verbs, claiming the difference is the more efficient use of the CPUs. With this model, just 76 percent of the CPU cycles were used for communication with on-loading/PSM versus 95 percent for offloading/Verbs.

The second FLUENT test case is the Truck 111M cell model, which is much more computationally intensive. In this case, the QLogic solution runs just 20 percent faster, since the overall communication burden is much less, although still taking up 53 percent of the CPU for on-loading with PSM and 61 percent for offloading with Verbs.

As one might suspect, Mellanox is having none of this. According to Gilad Shainer, senior director of HPC and Technical Computing at Mellanox, the offloading critique is unfounded, and benchmark tests such as the ones QLogic touts can be easily manipulated for the benefit particular outcomes. From his perspective, QLogic’s positioning of their InfiniBand on-load technology is a marketing ploy to make up for the lack of sophistication in the TrueScale silicon.

Shainer maintains that the rationale for offloading is straightforward: to be able to use system resources for what they do best, in this case, CPUs for computation and HCAs for network processing. According to him, that’s why most adapters use some form of offloading today, whether to support InfiniBand and MPI communication, Fibre Channel over Ethernet, TCP offload, or what have you.

On-loading also makes RDMA (Remote Direct Memory Access) impossible, which means data must be buffered by the CPU in certain situations, instead of being directly mapped by the HCA. In those cases, data transfer latencies are much higher — up to 7 times higher according to Mellanox — and throughput is lower.

This is especially true when InfiniBand is used to connect storage. Shainer says for file system applications like Lustre and GPFS, you can lose up to half the I/O bandwidth without RDMA (Yaworski concedes that Mellanox is currently better for InfiniBand-based storage but says QLogic is within “spitting distance” of its competitor on I/O performance.) Shainer also says RDMA gives Mellanox’s GPUDirect implementation a decided performance advantage, a claim disputed by QLogic.

On the other hand, says Shainer, just because the offload capability is on-chip, there is no requirement to use it. Mellanox supports network transport and MPI offload capabilities, but the user is able to switch those features on and off if so desired. In that sense, he points out, offloading is really a superset of on-loading.

Nevertheless, recent experience on some large clusters at Lawrence Livermore National Lab (LLNL) appear to back QLogic’s claims of scalability and performance, at least on some of the lab’s simulation codes. On Sierra, a 1,944-node HPC cluster at LLNL connected with QLogic InfiniBand adapters and switches, a multiphysics code was able to achieve 1 to 2 us of MPI latency across 24,000 cores and attain 27 to 30 million messages per second. Matt Leininger, deputy for advanced technology projects at LLNL, said that Sierra demonstrated better scaling than any of their other clusters, not to mention their older Blue Gene and Cray XT supercomputers. Leininger attributed the superior performance to the QLogic network.

At LLNL, QLogic InfiniBand now connects more than 4,000 nodes spread across Sierra and three smaller HPC clusters. The lab’s positive experience with the technology was almost certainly a factor that led the NNSA to select QLogic QDR InfiniBand over the Mellanox offering on the second Tri-Labs contract announced. With the win, QLogic gear will now be firmly entrenched at Sandia National Laboratories and Los Alamos National Laboratory, the other two labs in the Tri-Labs complex.

While Mellanox will continue to be a market leader in InfiniBand for the foreseeable future, QLogic may have found a technological strategy that enables it to expand its market share. Continuing to exploit that strategy is going to be tough going, given its competitor’s dominance in the InfiniBand market. But in Mellanox’s more all-encompassing RDMA offerings and QLogic’s more bare-bones HPC approach, the market may have found the differentiation needed to keep both InfiniBand product sets viable.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

NSF Issues $60M RFP for “Towards a Leadership-Class” System

May 16, 2017

In case you missed it, the National Science Foundation issued the request for proposals (RFP) for the next ‘Towards a Leadership-Class Computing Facility – Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Microsoft Azure Will Debut Pascal GPU Instances This Year

May 8, 2017

As Nvidia's GPU Technology Conference gets underway in San Jose, Calif., Microsoft today revealed plans to add Pascal-generation GPU horsepower to its Azure clo Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn't made the task of parallel progr Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This