QLogic Makes Case for Leaner, HPC-Centric InfiniBand

By Michael Feldman

July 26, 2011

It was a bit of a surprise when QLogic beat out Mellanox as the interconnect vendor on the National Nuclear Security Administration’s (NNSA’s) Tri-Lab Linux Capacity Cluster 2 contract in June. Not only was Mellanox the incumbent on the original Tri-Lab contract, but it is widely considered to have the more complete solution set for InfiniBand. Nevertheless, QLogic managed to win the day, and did so with somewhat unconventional technologies.

One of these is QLogic’s TrueScale InfiniBand architecture. TrueScale uses an on-load approach to networking in which the lion’s share of packet processing is passed off to the CPUs on the servers. That allows host channel adapters (HCAs) based on TrueScale chips to be much simpler in design than those used to offload those functions (in particular Mellanox ConnectX-based adapters), but at the cost of using CPU resources to do network tasks like packet processing.

That’s why offloading has been the traditional answer for computationally-burdened HPC systems, not just for lower-level packet manipulation, but for MPI processing as well. And it makes perfect sense. The less communication processing the CPUs have to do, the more time they can spend on the application.

But it doesn’t always work out that way in the real world. Especially for certain types of codes where the bottleneck is communication, rather than computation, being able to tap into host CPUs can be an advantage. This is especially true in modern-day clusters, which are filled with core-rich CPUs, not all of which can be fully utilized 100 percent of the time. In these situations, on-loading can exploit essentially free cycles and in a manner that scales naturally with the size of the cluster.

But even where the application is more computationally intensive, QLogic maintains that its on-load approach will still outrun Mellanox’s offloading approach. They attribute that to the other critical piece of their InfiniBand technology: Performance Scaled Messaging (PSM). PSM is QLogic’s communication library that it touts as their lightweight answer to InfiniBand Verbs. The latter was defined by the original InfiniBand spec designers to provide a general-purpose communication API that assumed RDMA and some sort of offloading in the network adapter.

QLogic came up with PSM as a leaner, meaner interface designed explicitly for high performance computing. And now that PSM has been turned over as open source and incorporated into the OpenFabrics Enterprise Distribution (OFED), the software can now be embraced by the wider HPC community. Like Verbs, PSM is supported in all major MPI implementations.

According to Joseph Yaworski, director of HPC Product and Solution Marketing at QLogic, PSM is what makes their InfiniBand offering so efficient for HPC environments. Both PSM and Verbs run on the server CPUs, but unlike Verbs, which was originally designed for handling of I/O requests in a datacenter environment (and later modified to support message passing when HPC became the primary user of InfiniBand), PSM was purpose-built for MPI from the start.

The difference is the nature of the communication for the two application areas. While I/O usually entails relatively large blocks of data to be sent across a limited number of nodes, MPI communication often requires tens of millions of relatively small messages to be passed between hundreds or even thousands of CPU cores.

“Verbs, due to its poor semantic match between MPI’s message passing requirements and the structure of the Verbs implementation, means that a heavy weight protocol must be traversed to handle each message,” says Yaworski. “This approach puts a significant burden on the host CPU and severely limits network performance, especially as a cluster is scaled.

QLogic points to a couple of ANSYS FLUENT benchmarks to show its InfiniBand performance on these common CFD codes. The tests were run on a 384-core server cluster, made up of 32 computational nodes and one NFS server node. Each server consisted of dual quad-core Intel Xeon 5670 “Westmere” 2.93GHz processors and 24GB of memory. Platform MPI was used with the MPI stats option turned on to collect the statistics for communications and CPU utilization. According to Yaworski, the same object code was used for the application for both on-loading and offloading runs.

The first test was the Eddy 417K cell model, which is relatively light on the computation side, but heavy on the communications. For this application, QLogic says on-loading with PSM delivers 366 percent more application performance than offloading with Verbs, claiming the difference is the more efficient use of the CPUs. With this model, just 76 percent of the CPU cycles were used for communication with on-loading/PSM versus 95 percent for offloading/Verbs.

The second FLUENT test case is the Truck 111M cell model, which is much more computationally intensive. In this case, the QLogic solution runs just 20 percent faster, since the overall communication burden is much less, although still taking up 53 percent of the CPU for on-loading with PSM and 61 percent for offloading with Verbs.

As one might suspect, Mellanox is having none of this. According to Gilad Shainer, senior director of HPC and Technical Computing at Mellanox, the offloading critique is unfounded, and benchmark tests such as the ones QLogic touts can be easily manipulated for the benefit particular outcomes. From his perspective, QLogic’s positioning of their InfiniBand on-load technology is a marketing ploy to make up for the lack of sophistication in the TrueScale silicon.

Shainer maintains that the rationale for offloading is straightforward: to be able to use system resources for what they do best, in this case, CPUs for computation and HCAs for network processing. According to him, that’s why most adapters use some form of offloading today, whether to support InfiniBand and MPI communication, Fibre Channel over Ethernet, TCP offload, or what have you.

On-loading also makes RDMA (Remote Direct Memory Access) impossible, which means data must be buffered by the CPU in certain situations, instead of being directly mapped by the HCA. In those cases, data transfer latencies are much higher — up to 7 times higher according to Mellanox — and throughput is lower.

This is especially true when InfiniBand is used to connect storage. Shainer says for file system applications like Lustre and GPFS, you can lose up to half the I/O bandwidth without RDMA (Yaworski concedes that Mellanox is currently better for InfiniBand-based storage but says QLogic is within “spitting distance” of its competitor on I/O performance.) Shainer also says RDMA gives Mellanox’s GPUDirect implementation a decided performance advantage, a claim disputed by QLogic.

On the other hand, says Shainer, just because the offload capability is on-chip, there is no requirement to use it. Mellanox supports network transport and MPI offload capabilities, but the user is able to switch those features on and off if so desired. In that sense, he points out, offloading is really a superset of on-loading.

Nevertheless, recent experience on some large clusters at Lawrence Livermore National Lab (LLNL) appear to back QLogic’s claims of scalability and performance, at least on some of the lab’s simulation codes. On Sierra, a 1,944-node HPC cluster at LLNL connected with QLogic InfiniBand adapters and switches, a multiphysics code was able to achieve 1 to 2 us of MPI latency across 24,000 cores and attain 27 to 30 million messages per second. Matt Leininger, deputy for advanced technology projects at LLNL, said that Sierra demonstrated better scaling than any of their other clusters, not to mention their older Blue Gene and Cray XT supercomputers. Leininger attributed the superior performance to the QLogic network.

At LLNL, QLogic InfiniBand now connects more than 4,000 nodes spread across Sierra and three smaller HPC clusters. The lab’s positive experience with the technology was almost certainly a factor that led the NNSA to select QLogic QDR InfiniBand over the Mellanox offering on the second Tri-Labs contract announced. With the win, QLogic gear will now be firmly entrenched at Sandia National Laboratories and Los Alamos National Laboratory, the other two labs in the Tri-Labs complex.

While Mellanox will continue to be a market leader in InfiniBand for the foreseeable future, QLogic may have found a technological strategy that enables it to expand its market share. Continuing to exploit that strategy is going to be tough going, given its competitor’s dominance in the InfiniBand market. But in Mellanox’s more all-encompassing RDMA offerings and QLogic’s more bare-bones HPC approach, the market may have found the differentiation needed to keep both InfiniBand product sets viable.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This