QLogic Makes Case for Leaner, HPC-Centric InfiniBand

By Michael Feldman

July 26, 2011

It was a bit of a surprise when QLogic beat out Mellanox as the interconnect vendor on the National Nuclear Security Administration’s (NNSA’s) Tri-Lab Linux Capacity Cluster 2 contract in June. Not only was Mellanox the incumbent on the original Tri-Lab contract, but it is widely considered to have the more complete solution set for InfiniBand. Nevertheless, QLogic managed to win the day, and did so with somewhat unconventional technologies.

One of these is QLogic’s TrueScale InfiniBand architecture. TrueScale uses an on-load approach to networking in which the lion’s share of packet processing is passed off to the CPUs on the servers. That allows host channel adapters (HCAs) based on TrueScale chips to be much simpler in design than those used to offload those functions (in particular Mellanox ConnectX-based adapters), but at the cost of using CPU resources to do network tasks like packet processing.

That’s why offloading has been the traditional answer for computationally-burdened HPC systems, not just for lower-level packet manipulation, but for MPI processing as well. And it makes perfect sense. The less communication processing the CPUs have to do, the more time they can spend on the application.

But it doesn’t always work out that way in the real world. Especially for certain types of codes where the bottleneck is communication, rather than computation, being able to tap into host CPUs can be an advantage. This is especially true in modern-day clusters, which are filled with core-rich CPUs, not all of which can be fully utilized 100 percent of the time. In these situations, on-loading can exploit essentially free cycles and in a manner that scales naturally with the size of the cluster.

But even where the application is more computationally intensive, QLogic maintains that its on-load approach will still outrun Mellanox’s offloading approach. They attribute that to the other critical piece of their InfiniBand technology: Performance Scaled Messaging (PSM). PSM is QLogic’s communication library that it touts as their lightweight answer to InfiniBand Verbs. The latter was defined by the original InfiniBand spec designers to provide a general-purpose communication API that assumed RDMA and some sort of offloading in the network adapter.

QLogic came up with PSM as a leaner, meaner interface designed explicitly for high performance computing. And now that PSM has been turned over as open source and incorporated into the OpenFabrics Enterprise Distribution (OFED), the software can now be embraced by the wider HPC community. Like Verbs, PSM is supported in all major MPI implementations.

According to Joseph Yaworski, director of HPC Product and Solution Marketing at QLogic, PSM is what makes their InfiniBand offering so efficient for HPC environments. Both PSM and Verbs run on the server CPUs, but unlike Verbs, which was originally designed for handling of I/O requests in a datacenter environment (and later modified to support message passing when HPC became the primary user of InfiniBand), PSM was purpose-built for MPI from the start.

The difference is the nature of the communication for the two application areas. While I/O usually entails relatively large blocks of data to be sent across a limited number of nodes, MPI communication often requires tens of millions of relatively small messages to be passed between hundreds or even thousands of CPU cores.

“Verbs, due to its poor semantic match between MPI’s message passing requirements and the structure of the Verbs implementation, means that a heavy weight protocol must be traversed to handle each message,” says Yaworski. “This approach puts a significant burden on the host CPU and severely limits network performance, especially as a cluster is scaled.

QLogic points to a couple of ANSYS FLUENT benchmarks to show its InfiniBand performance on these common CFD codes. The tests were run on a 384-core server cluster, made up of 32 computational nodes and one NFS server node. Each server consisted of dual quad-core Intel Xeon 5670 “Westmere” 2.93GHz processors and 24GB of memory. Platform MPI was used with the MPI stats option turned on to collect the statistics for communications and CPU utilization. According to Yaworski, the same object code was used for the application for both on-loading and offloading runs.

The first test was the Eddy 417K cell model, which is relatively light on the computation side, but heavy on the communications. For this application, QLogic says on-loading with PSM delivers 366 percent more application performance than offloading with Verbs, claiming the difference is the more efficient use of the CPUs. With this model, just 76 percent of the CPU cycles were used for communication with on-loading/PSM versus 95 percent for offloading/Verbs.

The second FLUENT test case is the Truck 111M cell model, which is much more computationally intensive. In this case, the QLogic solution runs just 20 percent faster, since the overall communication burden is much less, although still taking up 53 percent of the CPU for on-loading with PSM and 61 percent for offloading with Verbs.

As one might suspect, Mellanox is having none of this. According to Gilad Shainer, senior director of HPC and Technical Computing at Mellanox, the offloading critique is unfounded, and benchmark tests such as the ones QLogic touts can be easily manipulated for the benefit particular outcomes. From his perspective, QLogic’s positioning of their InfiniBand on-load technology is a marketing ploy to make up for the lack of sophistication in the TrueScale silicon.

Shainer maintains that the rationale for offloading is straightforward: to be able to use system resources for what they do best, in this case, CPUs for computation and HCAs for network processing. According to him, that’s why most adapters use some form of offloading today, whether to support InfiniBand and MPI communication, Fibre Channel over Ethernet, TCP offload, or what have you.

On-loading also makes RDMA (Remote Direct Memory Access) impossible, which means data must be buffered by the CPU in certain situations, instead of being directly mapped by the HCA. In those cases, data transfer latencies are much higher — up to 7 times higher according to Mellanox — and throughput is lower.

This is especially true when InfiniBand is used to connect storage. Shainer says for file system applications like Lustre and GPFS, you can lose up to half the I/O bandwidth without RDMA (Yaworski concedes that Mellanox is currently better for InfiniBand-based storage but says QLogic is within “spitting distance” of its competitor on I/O performance.) Shainer also says RDMA gives Mellanox’s GPUDirect implementation a decided performance advantage, a claim disputed by QLogic.

On the other hand, says Shainer, just because the offload capability is on-chip, there is no requirement to use it. Mellanox supports network transport and MPI offload capabilities, but the user is able to switch those features on and off if so desired. In that sense, he points out, offloading is really a superset of on-loading.

Nevertheless, recent experience on some large clusters at Lawrence Livermore National Lab (LLNL) appear to back QLogic’s claims of scalability and performance, at least on some of the lab’s simulation codes. On Sierra, a 1,944-node HPC cluster at LLNL connected with QLogic InfiniBand adapters and switches, a multiphysics code was able to achieve 1 to 2 us of MPI latency across 24,000 cores and attain 27 to 30 million messages per second. Matt Leininger, deputy for advanced technology projects at LLNL, said that Sierra demonstrated better scaling than any of their other clusters, not to mention their older Blue Gene and Cray XT supercomputers. Leininger attributed the superior performance to the QLogic network.

At LLNL, QLogic InfiniBand now connects more than 4,000 nodes spread across Sierra and three smaller HPC clusters. The lab’s positive experience with the technology was almost certainly a factor that led the NNSA to select QLogic QDR InfiniBand over the Mellanox offering on the second Tri-Labs contract announced. With the win, QLogic gear will now be firmly entrenched at Sandia National Laboratories and Los Alamos National Laboratory, the other two labs in the Tri-Labs complex.

While Mellanox will continue to be a market leader in InfiniBand for the foreseeable future, QLogic may have found a technological strategy that enables it to expand its market share. Continuing to exploit that strategy is going to be tough going, given its competitor’s dominance in the InfiniBand market. But in Mellanox’s more all-encompassing RDMA offerings and QLogic’s more bare-bones HPC approach, the market may have found the differentiation needed to keep both InfiniBand product sets viable.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This