Life After TeraGrid

By Michael Feldman

July 28, 2011

At the TeraGrid ’11 Conference earlier this month, John Towns delivered a keynote describing the end of the 10-year TeraGrid program and the ramp up of XSEDE, its replacement. XSEDE (EXtreme Science and Engineering Discovery Environment) will be the recipient of $121 million from the NSF over the next five years to support the new project, and Towns, who directs the Persistent Infrastructure Directorate at the NCSA and chairs the TeraGrid forum, will slip into the PI role for the new program.

XSEDE has advertised itself as less about high performance computing resources, which was the central focus of TeraGrid infrastructure, and more generally about collaborative digital environments. I spoke with Towns about what that’s going to mean for the TeraGrid user community and what they can expect under the new XSEDE regime.

The big difference with XSEDE, he said, is the shift away from TeraGrid’s technology-centric focus, which was designed to deliver primarily high-end HPC resources to researchers. With XSEDE, they’re moving to researcher-centric point of view, and in doing so, will be positioned to reach a much larger audience. At least, that’s the idea. “The intent is to create and employ an environment into which researchers can embed all of the resources they care about in order to be productive in conducting their work,” he told me.

The project will employ various distributed computing technologies, such as the XSEDE User Access Layer, to link up disparate hardware and software platforms, while providing a unified view of those resources. According to Towns, it’s quite possible most of the researchers using XSEDE will not use supercomputing resources at all. And these resources could be from outside NSF centers. So besides supers, XSEDE will encompass non-HPC systems and storage as well as database repositories, applications, and tools hosted on those machines.

How big that community could grow is still a question. The most recent assessment of the TeraGrid community pegs the number of researchers at approximately 7,000 unique users. According to Towns, that the broader availability and lower barriers to entry for this larger infrastructure could grow those numbers substantially. “I could easily imagine an order of magnitude larger number of researchers making use of it in a variety of ways,” he said.

Even though there is going to be a broader scope for XSEDE, with new capabilities and services, it doest mean they’re throwing HPC overboard. A guiding criteria for the project was to ensure a smooth transition for existing TeraGrid users, making sure there is no disruption in service. By and large, what researchers are doing from day to day should not change for them, said Towns.

For some users though, that might get a little more complicated. At the end of July, a number of TeraGrid HPC resources will no longer be available to XSEDE. These include the Big Red supercomputer at Indiana University, Queen Bee at LONI, Frost at NCAR, , Athena at NICS, NSTG at ORNL, Pople at PSC, and Ember at NCSA. Most of these are older systems, so overall not a lot of capacity will be lost, but it will reduce XSEDE’s HPC resources to just 13 high-end machines.

And even though $121 million has been allocated to the project for the next five years, it’s not clear how much NSF funding will be available to XSEDE HPC systems over that timeframe. That money is separate from the XSEDE award, and until those numbers known, it’s difficult to assess if funding will grow, shrink or stay the same, compared to TeraGrid. Even in the short term, this remains a question. The first report for XSEDE is still in the works, and until that is complete, there is no way to account for the resource providers’ contributions. Town expects it will be a little less than what they saw for TeraGrid.

The longer term prospects for HPC infrastructure under XSEDE have even more serious issues to contend with. According to Towns, the NSF has indicated they intend to stretch out the schedule for funding big HPC systems. Instead of allocating $30 million for a new supercomputer each year, as they did under the Track 2 program, these kinds of systems will only get funded every other year. That, said Towns, implies a reduction in resources in an absolute sense, which means these systems will be concentrated in just a few centers. Considering the operational lifetime of these machines is about four years, that means just two or perhaps three centers will have cutting-edge HPC available for NSF research. “There are plenty of us worried about this,” said Towns.

Despite that, he expects the XSEDE project to evolve into a much more useful platform for researchers than was TeraGrid. With the emphasis on interoperability, and a diversity of digital services and resources, rather than just big iron, Towns thinks that more types of research and a wider array of applications could be enabled. “We certainly want to see this develop as the seed for a much broader national cyberinfrastructure,” he said.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This