Above the Clouds: An Interview with Armando Fox

By Nicole Hemsoth

August 2, 2011

If you spend any time reading about scientific computing in the clouds, it is quite likely you have encountered the name Armando Fox at least once. Fox has been writing about cloud computing before the term ever emerged into mainstream computing speak and continues to be a prolific source of information about cutting-edge cloud computing research for scientific and technical computing.

Fox is an Adjunct Associate Professor at UC Berkeley and a co-founder of the Reliable, Adaptive and Distributed Systems Laboratory (RAD Lab) at Berkeley. He has held other teaching positions at Stanford, Illinois and MIT and is co-author of a paper that drew significant attention, “Above the Clouds: A Berkeley View of Cloud Computing,” which spelled out some early challenges and benefits of high performance computing clouds.

In addition to having his head in the clouds, Fox helped design the Intel Pentium Pro microprocessor and founded a company to commercialize his UC Berkeley dissertation research on mobile computing.

We recently spoke with Armando Fox about some of his observations on the future of high performance computing in the cloud and what directions he predicts industry and research will go in coming years.

HPCc: Give us a sense of your “history” with cloud and distributed computing — where does grid computing fit into this range of experiences, both scholarly and practical?

Fox: From 1994–1999, before the cloud was a thing, I worked on some of the earliest research projects in using clusters of commodity computers, the basis of today’s cloud architecture, as a graduate student at Berkeley. I’m now on the faculty at Berkeley and was a co-founder of the Reliable Adaptive Distributed Systems lab (RAD Lab), which was one of the earliest and most aggressive adopters of cloud computing for research and teaching.

We routinely do research experiments using hundreds of machines in the cloud, have spent hundreds of thousands of dollars for cloud capacity to support our research (though still much less than it would’ve cost to try to build and operate this capacity ourselves, which would not even have been possible for some of our very large experiments), and have used cloud computing in our courses from lower-level undergraduate though PhD to improve the students’ educational experience.

HPCc: You have published a number of papers on cloud computing for scientific applications, one of which was “Cloud Computing: What’s in it for Me as a Scientist” — although this was written some time ago, what IS in it for scientific users, many of whom have very specific needs, require low-latency networks, don’t want to contend with data movement hassles/expenses, etc.

Fox: It is true that there are some very large (“supercomputer sized”) scientific apps that really need much lower latency than what shared-nothing cloud provides; it’s also true that if you’re generating a lot of data each day, the costs to move it into and out of a third-party cloud can add up. However, we believe that there’s a huge and largely untapped “new middle class” of scientific computing users who would immediately benefit from running medium-to-large jobs (tens or a couple of hundred machines) on public clouds.

There are two reasons. One is zero waiting: rather than sitting in a queue waiting your turn on the big iron, you provision your ‘virtual supercomputer’ in minutes and start your experiment, or even multiple experiments simultaneously with different parameters. Second is true cost associativity (1000 machines x 1 hour is same price as 1 machine x 1000 hours), an unprecedented new ability made available by the public cloud. Together, these abilities can actually accelerate your research. And while some jobs do require something like MPI, which doesn’t run overwhelmingly well on the public cloud, frameworks like Hadoop, Hive, Pig, Dryad, and others allow plenty of useful problems to be solved, and even commercial packages like Matlab and Mathematica are starting to provide “cloud back-end” computation.

HPCc: Do you think “HPC-optimized” public cloud services are enough to resolve current barriers for HPC cloud computing to become more widespread?

Fox: As above — the current cloud architecture won’t be the answer for all scientific computing users. But yes, a lot can be done to tailor the specific cloud offerings to HPC (as Amazon and others have begun to do). And the exciting part here is that because of the scale and volume of commodity clouds, scientific computing users have a chance to do something they’ve never really had before — to influence the design of commodity equipment!

HPCc: Outside of the challenges I referred to in both questions, what are some of the programming problems that are persistent and what is happening now that might help overcome them?

Fox: Frameworks like Hadoop are great if your problem can be cast as one or more map/reduce problems, but writing that code is still cumbersome compared to using very-high-level languages like Python. Expect to see lots of tools that make current cloud frameworks more accessible to such languages. As well, today there are many different cloud computation frameworks that were developed in isolation, so they don’t always play nice together in terms of intelligently sharing/scheduling cloud resources. This is an area of active research — the Mesos project at UC Berkeley is one example of a “meta-framework” that does this task and is already being test-deployed internally at companies like Twitter and Facebook.

HPCc: There is a lot of talk about the coming age of “big data” — where does cloud computing play a role in this trend toward ever-larger datasets? There are some cost/data movement issues, so where is the benefit?

Fox: With big data you’re talking terabytes a day, minimum. The benefit is that to do meaningful computation on big data and get an answer in a timely manner, you need the parallelism of the cloud. Programming the cloud won’t just be a “benefit” for big data analytics, it will be the only way such analytics gets done. And while data movement remains a challenge, it will receive increasing attention partly because once your data does get into the cloud, (a) it’s backed up and (b) other scientists can potentially access it easily for their own work, i.e., the cloud facilitates data sharing.

HPCc: What strikes you as one of the best use cases for very large-scale computing on a public cloud resource?

Fox: The big win for public cloud is elasticity. If your work (whether running experiments, operating a website, or crunching data) uses an amount of resources that’s hard to predict in advance and/or may change significantly over short timescales, using the public cloud effectively offloads the risk of mispredicting what resources you need. Also, because you can pay as you go, the public cloud allows you to harness minimal resources at first and then smoothly increase your consumption as you earn revenue (or raise grant money, as the case may be).

More information about Armando Fox and his research can be found here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This