Above the Clouds: An Interview with Armando Fox

By Nicole Hemsoth

August 2, 2011

If you spend any time reading about scientific computing in the clouds, it is quite likely you have encountered the name Armando Fox at least once. Fox has been writing about cloud computing before the term ever emerged into mainstream computing speak and continues to be a prolific source of information about cutting-edge cloud computing research for scientific and technical computing.

Fox is an Adjunct Associate Professor at UC Berkeley and a co-founder of the Reliable, Adaptive and Distributed Systems Laboratory (RAD Lab) at Berkeley. He has held other teaching positions at Stanford, Illinois and MIT and is co-author of a paper that drew significant attention, “Above the Clouds: A Berkeley View of Cloud Computing,” which spelled out some early challenges and benefits of high performance computing clouds.

In addition to having his head in the clouds, Fox helped design the Intel Pentium Pro microprocessor and founded a company to commercialize his UC Berkeley dissertation research on mobile computing.

We recently spoke with Armando Fox about some of his observations on the future of high performance computing in the cloud and what directions he predicts industry and research will go in coming years.

HPCc: Give us a sense of your “history” with cloud and distributed computing — where does grid computing fit into this range of experiences, both scholarly and practical?

Fox: From 1994–1999, before the cloud was a thing, I worked on some of the earliest research projects in using clusters of commodity computers, the basis of today’s cloud architecture, as a graduate student at Berkeley. I’m now on the faculty at Berkeley and was a co-founder of the Reliable Adaptive Distributed Systems lab (RAD Lab), which was one of the earliest and most aggressive adopters of cloud computing for research and teaching.

We routinely do research experiments using hundreds of machines in the cloud, have spent hundreds of thousands of dollars for cloud capacity to support our research (though still much less than it would’ve cost to try to build and operate this capacity ourselves, which would not even have been possible for some of our very large experiments), and have used cloud computing in our courses from lower-level undergraduate though PhD to improve the students’ educational experience.

HPCc: You have published a number of papers on cloud computing for scientific applications, one of which was “Cloud Computing: What’s in it for Me as a Scientist” — although this was written some time ago, what IS in it for scientific users, many of whom have very specific needs, require low-latency networks, don’t want to contend with data movement hassles/expenses, etc.

Fox: It is true that there are some very large (“supercomputer sized”) scientific apps that really need much lower latency than what shared-nothing cloud provides; it’s also true that if you’re generating a lot of data each day, the costs to move it into and out of a third-party cloud can add up. However, we believe that there’s a huge and largely untapped “new middle class” of scientific computing users who would immediately benefit from running medium-to-large jobs (tens or a couple of hundred machines) on public clouds.

There are two reasons. One is zero waiting: rather than sitting in a queue waiting your turn on the big iron, you provision your ‘virtual supercomputer’ in minutes and start your experiment, or even multiple experiments simultaneously with different parameters. Second is true cost associativity (1000 machines x 1 hour is same price as 1 machine x 1000 hours), an unprecedented new ability made available by the public cloud. Together, these abilities can actually accelerate your research. And while some jobs do require something like MPI, which doesn’t run overwhelmingly well on the public cloud, frameworks like Hadoop, Hive, Pig, Dryad, and others allow plenty of useful problems to be solved, and even commercial packages like Matlab and Mathematica are starting to provide “cloud back-end” computation.

HPCc: Do you think “HPC-optimized” public cloud services are enough to resolve current barriers for HPC cloud computing to become more widespread?

Fox: As above — the current cloud architecture won’t be the answer for all scientific computing users. But yes, a lot can be done to tailor the specific cloud offerings to HPC (as Amazon and others have begun to do). And the exciting part here is that because of the scale and volume of commodity clouds, scientific computing users have a chance to do something they’ve never really had before — to influence the design of commodity equipment!

HPCc: Outside of the challenges I referred to in both questions, what are some of the programming problems that are persistent and what is happening now that might help overcome them?

Fox: Frameworks like Hadoop are great if your problem can be cast as one or more map/reduce problems, but writing that code is still cumbersome compared to using very-high-level languages like Python. Expect to see lots of tools that make current cloud frameworks more accessible to such languages. As well, today there are many different cloud computation frameworks that were developed in isolation, so they don’t always play nice together in terms of intelligently sharing/scheduling cloud resources. This is an area of active research — the Mesos project at UC Berkeley is one example of a “meta-framework” that does this task and is already being test-deployed internally at companies like Twitter and Facebook.

HPCc: There is a lot of talk about the coming age of “big data” — where does cloud computing play a role in this trend toward ever-larger datasets? There are some cost/data movement issues, so where is the benefit?

Fox: With big data you’re talking terabytes a day, minimum. The benefit is that to do meaningful computation on big data and get an answer in a timely manner, you need the parallelism of the cloud. Programming the cloud won’t just be a “benefit” for big data analytics, it will be the only way such analytics gets done. And while data movement remains a challenge, it will receive increasing attention partly because once your data does get into the cloud, (a) it’s backed up and (b) other scientists can potentially access it easily for their own work, i.e., the cloud facilitates data sharing.

HPCc: What strikes you as one of the best use cases for very large-scale computing on a public cloud resource?

Fox: The big win for public cloud is elasticity. If your work (whether running experiments, operating a website, or crunching data) uses an amount of resources that’s hard to predict in advance and/or may change significantly over short timescales, using the public cloud effectively offloads the risk of mispredicting what resources you need. Also, because you can pay as you go, the public cloud allows you to harness minimal resources at first and then smoothly increase your consumption as you earn revenue (or raise grant money, as the case may be).

More information about Armando Fox and his research can be found here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This