Above the Clouds: An Interview with Armando Fox

By Nicole Hemsoth

August 2, 2011

If you spend any time reading about scientific computing in the clouds, it is quite likely you have encountered the name Armando Fox at least once. Fox has been writing about cloud computing before the term ever emerged into mainstream computing speak and continues to be a prolific source of information about cutting-edge cloud computing research for scientific and technical computing.

Fox is an Adjunct Associate Professor at UC Berkeley and a co-founder of the Reliable, Adaptive and Distributed Systems Laboratory (RAD Lab) at Berkeley. He has held other teaching positions at Stanford, Illinois and MIT and is co-author of a paper that drew significant attention, “Above the Clouds: A Berkeley View of Cloud Computing,” which spelled out some early challenges and benefits of high performance computing clouds.

In addition to having his head in the clouds, Fox helped design the Intel Pentium Pro microprocessor and founded a company to commercialize his UC Berkeley dissertation research on mobile computing.

We recently spoke with Armando Fox about some of his observations on the future of high performance computing in the cloud and what directions he predicts industry and research will go in coming years.

HPCc: Give us a sense of your “history” with cloud and distributed computing — where does grid computing fit into this range of experiences, both scholarly and practical?

Fox: From 1994–1999, before the cloud was a thing, I worked on some of the earliest research projects in using clusters of commodity computers, the basis of today’s cloud architecture, as a graduate student at Berkeley. I’m now on the faculty at Berkeley and was a co-founder of the Reliable Adaptive Distributed Systems lab (RAD Lab), which was one of the earliest and most aggressive adopters of cloud computing for research and teaching.

We routinely do research experiments using hundreds of machines in the cloud, have spent hundreds of thousands of dollars for cloud capacity to support our research (though still much less than it would’ve cost to try to build and operate this capacity ourselves, which would not even have been possible for some of our very large experiments), and have used cloud computing in our courses from lower-level undergraduate though PhD to improve the students’ educational experience.

HPCc: You have published a number of papers on cloud computing for scientific applications, one of which was “Cloud Computing: What’s in it for Me as a Scientist” — although this was written some time ago, what IS in it for scientific users, many of whom have very specific needs, require low-latency networks, don’t want to contend with data movement hassles/expenses, etc.

Fox: It is true that there are some very large (“supercomputer sized”) scientific apps that really need much lower latency than what shared-nothing cloud provides; it’s also true that if you’re generating a lot of data each day, the costs to move it into and out of a third-party cloud can add up. However, we believe that there’s a huge and largely untapped “new middle class” of scientific computing users who would immediately benefit from running medium-to-large jobs (tens or a couple of hundred machines) on public clouds.

There are two reasons. One is zero waiting: rather than sitting in a queue waiting your turn on the big iron, you provision your ‘virtual supercomputer’ in minutes and start your experiment, or even multiple experiments simultaneously with different parameters. Second is true cost associativity (1000 machines x 1 hour is same price as 1 machine x 1000 hours), an unprecedented new ability made available by the public cloud. Together, these abilities can actually accelerate your research. And while some jobs do require something like MPI, which doesn’t run overwhelmingly well on the public cloud, frameworks like Hadoop, Hive, Pig, Dryad, and others allow plenty of useful problems to be solved, and even commercial packages like Matlab and Mathematica are starting to provide “cloud back-end” computation.

HPCc: Do you think “HPC-optimized” public cloud services are enough to resolve current barriers for HPC cloud computing to become more widespread?

Fox: As above — the current cloud architecture won’t be the answer for all scientific computing users. But yes, a lot can be done to tailor the specific cloud offerings to HPC (as Amazon and others have begun to do). And the exciting part here is that because of the scale and volume of commodity clouds, scientific computing users have a chance to do something they’ve never really had before — to influence the design of commodity equipment!

HPCc: Outside of the challenges I referred to in both questions, what are some of the programming problems that are persistent and what is happening now that might help overcome them?

Fox: Frameworks like Hadoop are great if your problem can be cast as one or more map/reduce problems, but writing that code is still cumbersome compared to using very-high-level languages like Python. Expect to see lots of tools that make current cloud frameworks more accessible to such languages. As well, today there are many different cloud computation frameworks that were developed in isolation, so they don’t always play nice together in terms of intelligently sharing/scheduling cloud resources. This is an area of active research — the Mesos project at UC Berkeley is one example of a “meta-framework” that does this task and is already being test-deployed internally at companies like Twitter and Facebook.

HPCc: There is a lot of talk about the coming age of “big data” — where does cloud computing play a role in this trend toward ever-larger datasets? There are some cost/data movement issues, so where is the benefit?

Fox: With big data you’re talking terabytes a day, minimum. The benefit is that to do meaningful computation on big data and get an answer in a timely manner, you need the parallelism of the cloud. Programming the cloud won’t just be a “benefit” for big data analytics, it will be the only way such analytics gets done. And while data movement remains a challenge, it will receive increasing attention partly because once your data does get into the cloud, (a) it’s backed up and (b) other scientists can potentially access it easily for their own work, i.e., the cloud facilitates data sharing.

HPCc: What strikes you as one of the best use cases for very large-scale computing on a public cloud resource?

Fox: The big win for public cloud is elasticity. If your work (whether running experiments, operating a website, or crunching data) uses an amount of resources that’s hard to predict in advance and/or may change significantly over short timescales, using the public cloud effectively offloads the risk of mispredicting what resources you need. Also, because you can pay as you go, the public cloud allows you to harness minimal resources at first and then smoothly increase your consumption as you earn revenue (or raise grant money, as the case may be).

More information about Armando Fox and his research can be found here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This