Adventures with HPC Accelerators: GPUs and Intel MIC Coprocessors

By Aaron Dubrow

August 15, 2011

Researchers from Mellanox Technologies and the Texas Advanced Computing Center share early experiences at TeraGrid ‘11

For the past few years, the buzz around hardware accelerators, particularly graphics processing units (GPUs), has been growing.  Designed with a massive number of floating point units and very high memory bandwidth so as to accelerate certain computing processes, GPUs and other emerging accelerates are being embraced by the scientific computing world as a way to speed up simulation, modeling, visualization, and data analysis.

At the TeraGrid 2011 conference in Salt Lake City, Utah, Pak Liu, a software engineer from Mellanox Technologies, and Lars Koesterke, a computational researcher at the Texas Advanced Computing Center (TACC), shared results from their experiences using emerging accelerator and coprocessor technology.

Lui’s talk focused on GPUDirect, a new transfer protocol that reduces latency and increases performance for end-to-end data transfers between GPUs. The problem, Lui explained, is that current GPU communication is redundant, requiring data to be copied between “pinned” memories during an operation, and often needs to steal cycles from the CPU to schedule and initiate jobs.

“There are many things you can do with the GPU capability and the good floating point arithmetic it provides,” Lui said. “But to scale out and use many machines together, you need Infiniband to get the communication across.”

Developed collaboratively by Mellanox, NVIDIA, and researchers at several HPC center, GPUDirect allows for faster GPU to GPU communication. Lui showed benchmarks of the protocol for two well-known molecular dynamics codes, AMBER and LAMMPS. GPUDirect reduced latency in the codes by 30 percent and improved overall performance by 20-40 percent. Lui stressed that performance gains depend on the specific application, the dataset size, and communication required.

In order to achieve these gains, the researchers had to modify the Linux kernel, the NVIDIA drivers, and the Mellanox drivers to eliminate memory copies and CPU involvement in the GPU data transfer.

“Eventually, scientific applications must scale to many GPU nodes and we needed to find an efficient way to communicate,” Lui said.

First released in June 2010, GPUDirect v1.0 is supported by InfiniBand solutions from Mellanox and QLogic, and other vendors are adding support for the technology in their hardware and software products.

Whereas GPUs have been used in the high-performance computing world for several years, Intel’s many integrated core (or MIC, pronounced “Mike”) architecture is yet to hit the market. Intel has granted several dozen institutions, including TACC, early access to MIC cards and trained these partners in how to use the technology. TACC’s role has been to test various computing codes on the MICs and provide Intel with feedback regarding the programming support, optimization, and needs of the HPC community.

“The most important question is how will we exploit this new technology? How difficult will it be to code?” Koesterke said.

MIC is Intel’s answer to NVIDIA and AMD’s GPU challenge. Both GPUs and Intel’s MIC coprocessors allow far greater processing speeds by enabling many more threads to occur simultaneously. Both connect to the CPU through a PCI bus. The key difference between the two technologies, according to Koesterke, is that Intel’s MICs take advantage of the x86 architecture that has dominated the high-performance (and consumer) computing world for decades, whereas GPUs have a stream processing architecture quite different from traditional cores.

Also, MICs are coded using C, C++, Fortran and OpenMP — languages familiar to the open science community. GPUs are coded with CUDA and OpenCL, newer languages that many in the community have not yet mastered. According to Koesterke, the community’s familiarity with the x86 architecture means researchers should have an easier time taking advantage of the capabilities of the new technology with less recoding and a faster ramp up time.

Though promising, MICs are not without risks. “MIC is not yet a product,” Koesterke said. “The programming models are all there, but sustained performance is yet to be proven.”

Koesterke could not provide the details from initial benchmarking efforts at TACC (under non-disclosure); however, he said the evidence suggests that MICs will be an attractive option to computational scientists when they are released in late 2012 or early 2013.

Other sessions at the conference highlighted the development of MATLAB for GPUs and tuning GPUs for matrix multiplication. In addition, many of the finalists in the scientific visualization contest  were created using GPU cluster systems.

Several of the nation’s advanced computing systems that are part of the newly announced Extreme Digital Environment for Science and Engineering (XSEDE), formerly the TeraGrid, currently run on GPUs. The Forge cluster at the National Center for Supercomputing Applications, Nautilus at the National Institute for Computational Sciences, TeraDRE at Purdue University, the Longhorn and Spur systems at the Texas Advanced Computing Center, and the Keeneland Project, developed under a partnership that includes the Georgia Institute of Technology, the University of Tennessee at Knoxville, and Oak Ridge National Laboratory all employ GPUs.

Hardware accelerators are changing the way computational scientists think about their problems, allowing even greater parallelism and processing power. Much work is still needed for the community to take full advantage of these technologies, but based on the early adoption patterns in the TeraGrid community, it appears these new processors will be part of the performance equation for a long time to come.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qubits on an H1 system to simulate an iron catalyst's low ener Read more…

Diversity Hiring Maximizes Everyone’s Success in STEM and Beyond

September 12, 2024

Despite overwhelming evidence, some companies remain surprised by this simple revelation: Diverse workforces and leadership teams are good for business. Companies that cultivate diverse hiring practices and maintain a di Read more…

GenAI: It’s Not the GPUs, It’s the Storage

September 12, 2024

A recent news release from Data storage company WEKA and S&P Global Market Intelligence unveiled the findings of their second annual Global Trends in AI report. The global study, conducted by S&P Global Market In Read more…

Argonne’s HPC/AI User Forum Wrap Up

September 11, 2024

As fans of this publication will already know, AI is everywhere. We hear about it in the news, at work, and in our daily lives. It’s such a revolutionary technology that even established events focusing on HPC specific Read more…

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be natively integrated into four of the world's most advanced qu Read more…

Computing-Driven Medicine: Sleeping Better with HPC

September 10, 2024

As a senior undergraduate student at Fisk University in Nashville, Tenn., Ifrah Khurram's calculus professor, Dr. Sanjukta Hota, encouraged her to apply for the Sustainable Research Pathways Program (SRP). SRP was create Read more…

GenAI: It’s Not the GPUs, It’s the Storage

September 12, 2024

A recent news release from Data storage company WEKA and S&P Global Market Intelligence unveiled the findings of their second annual Global Trends in AI rep Read more…

Shutterstock 793611091

Argonne’s HPC/AI User Forum Wrap Up

September 11, 2024

As fans of this publication will already know, AI is everywhere. We hear about it in the news, at work, and in our daily lives. It’s such a revolutionary tech Read more…

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be n Read more…

AWS’s High-performance Computing Unit Has a New Boss

September 10, 2024

Amazon Web Services (AWS) has a new leader to run its high-performance computing GTM operations. Thierry Pellegrino, who is well-known in the HPC community, has Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, in Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Shutterstock 1897494979

What’s New with Chapel? Nine Questions for the Development Team

September 4, 2024

HPC news headlines often highlight the latest hardware speeds and feeds. While advances on the hardware front are important, improving the ability to write soft Read more…

Critics Slam Government on Compute Speeds in Regulations

September 3, 2024

Critics are accusing the U.S. and state governments of overreaching by including limits on compute speeds in regulations and laws, which they claim will limit i Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Leading Solution Providers

Contributors

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

xAI Colossus: The Elon Project

September 5, 2024

Elon Musk's xAI cluster, named Colossus (possibly after the 1970 movie about a massive computer that does not end well), has been brought online. Musk recently Read more…

Department of Justice Begins Antitrust Probe into Nvidia

August 9, 2024

After months of skyrocketing stock prices and unhinged optimism, Nvidia has run into a few snags – a  design flaw in one of its new chips and an antitrust pr Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Spelunking the HPC and AI GPU Software Stacks

June 21, 2024

As AI continues to reach into every domain of life, the question remains as to what kind of software these tools will run on. The choice in software stacks – Read more…

Shutterstock 1886124835

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical c Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire