Testing the Cloud: Assuring Availability

By Joe Barry

August 16, 2011

Cloud computing is changing how IT services are delivered and consumed today. The ability for enterprises large and small to centralize and outsource increasingly complex IT infrastructure, while at the same time consuming cloud-based IT services on an on-demand basis, promises to transform the economics of doing business.

But, note that I state “promises” as even though there are many success stories amongst early adopters, the real test will come when cloud computing becomes the de-facto model for IT service delivery and consumption. By all accounts, mainstream adoption of cloud services is close at hand.

In essence, cloud computing is entering a new phase in its development, where assuring the availability and quality of cloud services will become a major challenge. Preparing for this now will ensure that cloud computing continues to deliver on its “promise”.

From excess to scarce resources

Cloud computing was initially driven by excess computing capacity. Large web companies, such as Amazon and Google, that had to build large data center capacity for their own business, saw an opportunity to provide their excess capacity as a service to others. This has been so successful that these cloud services, such as Amazon Web Services, have become a business in themselves.

Yet, as these services become more popular, demand will tend to outstrip supply, especially as some of the enablers of cloud service adoption, such as higher speed access connections, continue to grow in capacity. Simply adding more servers and higher speed networks is effective, but costly and can undermine one of the main reasons for using cloud services, namely cost reduction.  Cloud service providers will thus face the dilemma of managing demand for scarcer computing resources while at the same time maintaining a low, or at least competitive, cost level.

In other words, how can cloud service providers meet mainstream demand cost-effectively?

Efficiently Assuring Service Availability

Cloud services come in many shapes and sizes, from private clouds to public clouds with software-, platform- and infrastructure-as-a-service. Nevertheless, all these flavors of cloud service have a common need to assure service availability and do so as efficiently and cost effectively as possible.

Many cloud services already provide service availability monitoring tools, but these are often limited to monitoring of server or service up-time. Server or service up-time is but one of the aspects of service availability that need to be addressed as cloud services are dependent on much more than just the physical or virtual server on which they reside. Increasingly, the data communication infrastructure supporting the cloud service from the provider to the consumer also needs to be assured even though this might be outside the direct control of the service provider.  

To ensure mainstream adoption of cloud services, consumers must be confident that the services that are required or the data that is hosted by cloud services is available quickly when and where they need it. Otherwise, why not continue with current approaches? Mainstream consumers are noted for being more conservative and pragmatic in their choice of solutions, so addressing this concern must be a top priority for continued expansion of cloud service adoption.

Therefore, building the infrastructure to test and monitor cloud services is essential.

Testing and monitoring cloud services

From a testing and monitoring perspective, there are a number of layers one can address:

•    The Wide Area Network (WAN) providing data communication services between the enterprise customer and the cloud service – fundamental to service assurance and testing of end-to-end service availability

•    The data center infrastructure comprising servers and data communication between servers (LAN), where service availability and uptime of this equipment is key as well as efficient use of resources to ensure service efficiency

•    The monitoring infrastructure in the data center that is the basis for service assurance which itself needs to efficient

•    The individual servers and monitoring appliances that are based on servers that must also follow efficiency and availability principles to assure overall service efficiency and service availability
 
Testing end-to-end

The first test that can be performed is testing end-to-end availability. At a basic level, this involves testing connectivity, but can also involve some specific testing relevant for cloud services, such as latency measurement. Several commercial systems exist for testing latency in a WAN environment. These are most often used by financial institutions to determine the time it takes to execute financial transactions with remote stock exchanges, but can also be used by cloud service providers to test the latency of the connection to enterprise customers.

This solution requires the installation at the enterprise of a network appliance for monitoring latency, which could also be used to test connectivity. Such an appliance could also be used for troubleshooting and SLA monitoring.

Typically the cloud service provider does not own the WAN data communication infrastructure. However, using network monitoring and analysis appliances at both the data center and the enterprise, it is possible to measure the performance of the WAN in providing the data communication service required. The choice of WAN data communication provider should also be driven by the ability of this provider to provide performance data in support of agreed SLAs. In other words, this provider should have the monitoring and analysis infrastructure in place to assure services.

From reaction to service assurance

Network monitoring and analysis of the data center infrastructure is also crucial as cloud service providers need to rely less on troubleshooting and more on service assurance strategies. In typical IT network deployments, a reactive strategy is preferred whereby issues are dealt with in a troubleshooting manner as they arise. For enterprise LAN environments, this can be acceptable in many cases, as some downtime can be tolerated. However, for cloud service providers, downtime is a disaster! If customers are not confident in the cloud service provider’s ability to assure service availability, they will be quick to find alternatives or even revert to a local installation.

A service assurance strategy involves constant monitoring of the performance of the network and services so that issues can be identified before they arise. Network and application performance monitoring tools are available from a number of vendors for precisely this purpose.

The power of virtualization

One of the technology innovations of particular use to cloud service providers is virtualization. The ability to consolidate multiple cloud services onto as few physical servers as possible provides tremendous efficiency benefits by lower cost, space and power consumption. In addition, the ability to move virtual machines supporting cloud services from one physical server to another allows efficient use of resources in matching time-of-day demand, as well as allowing fast reaction to detected performance issues.

One of the consequences of this consolidation is the need for higher speed interfaces as more data needs to be delivered to each server. This, in turn requires that the data communication infrastructure is dimensioned to provide this data, which in turn demands that the network monitoring infrastructure can keep up with the data rates without losing data. This is far from a given, so cloud service providers need to pay particular attention to the throughput performance of network monitoring and analysis appliances to ensure that they can keep up also in the future.

Within the virtualized servers themselves, there are also emerging solutions to assist in monitoring performance. Just as network and application performance monitoring appliances are available to monitor the physical infrastructure, there are now available virtualized versions of these applications for monitoring virtual applications and communication between virtual machines.

There are also virtual test applications that allow a number of virtual ports to be defined that can be used for load-testing in a cloud environment. This is extremely useful for testing whether a large number of users can access a service without having to deploy a large test network. An ideal tool for cloud service providers.

Bringing virtualization to network monitoring and analysis

While virtualization has been used to improve service efficiency, the network monitoring and analysis infrastructure is still dominated by single server implementations. In many cases, this is because the network monitoring and analysis appliance requires all the processing power it can get. However, there are opportunities to consolidate appliances, especially as servers and server CPUs increase performance on a yearly basis.

Solutions are now available to allow multiple network monitoring and analysis applications to be hosted on the same physical server. If all the applications are based on the same operating system, intelligent network adapters have the ability to ensure that data is shared between these applications, which often need to analyze the same data at the same time, but for different purposes.

However, for situations where the applications are based on different operating systems, virtualization can be used to consolidate them onto a single physical server. Demonstrations have shown that up to 32 applications can thus be consolidated using virtualization.

By pursuing opportunities for consolidation of network monitoring and analysis appliances, cloud service providers can further improve service efficiency.

Preparing for mainstream adoption

Mainstream adoption of cloud services is just around the corner and to take full advantage of this demand, cloud service providers can use the existing tools and concepts described above to assure service availability in a cost effective and efficient manner.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This