Taking a Disruptive Approach to Exascale

By Nicole Hemsoth

August 18, 2011

Early in August the U.S. Department of Energy’s Office of Science and Office of Advanced Scientific Computing Research (ASCR) held a workshop called “Exascale and Beyond: Gaps in Research, Gaps in our Thinking” that brought together luminaries from the world of high performance computing to discuss research and practical challenges at exascale.

Given the scope of the short event’s series of discussions, we wanted to highlight a few noteworthy presentations to lend a view into how researchers perceive the coming challenges of exascale computing. While all of the speakers addressed known challenges of exascale computing, most brought their own research and practical experiences from large HPC centers to bear.

For instance, MIT professor of Electrical Engineering and Computer Science and director of the university’s Computer Science and Artificial Intelligence Laboratory (CSAIL) Anant Agarwal asked attendees if the current approach to exascale computing is radical enough.

Agarwal focused on the targets set by the Ubiquitous High Performance Computing (UHPC) set forth by DARPA, claiming that the debates have centered on increasing performance while reducing energy but that the challenges are far greater than mere energy. Agarwal argues that the other great hurdles lie in programmability and resiliency—and that to arrive at solutions for these problems, “disruptive research” is required. This kind of research will focus on the fact that getting two out the three big problems (performance, efficiency and programmability) will be relatively “easy” getting all three right presents significant challenges.

NVIDIA’s Bill Dally echoed some of Agarwal’s assertions in his presentation, “Power and Programmability: The Challenges of Exascale Computing” in which he proclaimed the end to historic levels of scaling, citing challenges related to power and code.

In his presentation, Dally claimed that it’s not about the FLOPs any longer, it’s about data movement. And further, it’s not simply a matter of power efficiency as we traditionally think about, it’s about locality.

Dally argues that “algorithms should be designed to perform more work per unit data movement” and that “programming systems should further optimize this data movement.” He went to cite the fact that architectures need to facilitate data movement by providing an exposed hierarchy and efficient communication.

In some ways, Dally’s presentation offered some of the “disruptive” ideas Agarwal cited that can radicalize ways of thinking about exascale limitations. Dally’s focus on locality (optimizing data movement versus focusing on the FLOPs; optimizing subdivision and fetching paradigms; offering an exposed storage hierarchy with more efficient communication and bulk transfer) is a break from the norm in terms of offering solutions for exascale challenges—and one that generated rich fodder for the presentation, which you can find in detail here.

Locality was a hot-button issue at this workshop, drawing a detailed, solution-rich presentation from Allan Snavely, associate director of the San Diego Supercomputer Center and adjunct professor in UCSD’s Department of Computer Science and Engineering.

In his presentation, “Whose Job is it to Find Locality?” Snavely dug deeper into some of the initial concepts Dally put forth. Snavely recognized that people seem to be waiting on “magic” compilers and programming languages to come along, for application programmers to suddenly be rendered flawless, or for machines to simply let users choose how to burn up resources.

He claims that the attitude of “LINPACK has lots of locality, so what’s the problem” is the root of a problem as everyone waits for answers to locality problems to fall out of the sky. In his presentation, Snavely proposes a few solutions, including a new approach to the software stack found here.

In addition to moving the conversation out of the theoretical and into the realm of actual solutions, Snavely discussed how his UCSD team is currently developing tools and methodologies that can identify location in applications to reduce the processor frequency for effective power savings and further, working on tools that can automate the process of inserting “frequency throttling calls” into large-scale applications.

The Hunt for Perfect Solutions

The unstated theme of the workshop undoubtedly was focused on out-of-the-box thinking for exascale challenges that provide the “radical” approaches Agarwal and others touched upon. Still, it was useful to pick up on the practical and theoretical issues with presentations from notables, including Thomas Sterling, who discussed Exascale Execution Models, John Shalf who highlighted the past, present and future of exascale computing, and Dave Resnick who looked at the missing links that stand in the way before exascale computing becomes a reality.

Others provided real-world perspectives, including IBM Research Senior Manager, Mootaz Elnozahy, in his presentation on lessons learned from HPCS/PERCS project.

Aside from presentations addressing some of the research and practical challenges of exascale computing, others, including Keren Bergman and Norman Jouppi addressed the future of photonics in the era of exascale while others, including Dave Resnick, focused on memory (in this case Micron’s new memory component, the Hybrid Memory Cube).

With all presentation topics considered collectively, there is evidence that we are moving beyond simple questions about simple power or performance issues and into the realm of disruptive approaches to programming and optimizing for exascale systems. Detailed slides and other materials to further the conversation can be found here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

HPE Extreme Performance Solutions

“Lunch & Learn” to Explore the Growing Applications of Genomic Analytics

In the digital age of medicine, healthcare providers are rapidly transforming their approach to patient care. Traditional technologies are no longer sufficient to process vast quantities of medical data (including patient histories, treatment plans, diagnostic reports, and more), challenging organizations to invest in a new style of IT to enable faster and higher-quality care. Read more…

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This