Taking a Disruptive Approach to Exascale

By Nicole Hemsoth

August 18, 2011

Early in August the U.S. Department of Energy’s Office of Science and Office of Advanced Scientific Computing Research (ASCR) held a workshop called “Exascale and Beyond: Gaps in Research, Gaps in our Thinking” that brought together luminaries from the world of high performance computing to discuss research and practical challenges at exascale.

Given the scope of the short event’s series of discussions, we wanted to highlight a few noteworthy presentations to lend a view into how researchers perceive the coming challenges of exascale computing. While all of the speakers addressed known challenges of exascale computing, most brought their own research and practical experiences from large HPC centers to bear.

For instance, MIT professor of Electrical Engineering and Computer Science and director of the university’s Computer Science and Artificial Intelligence Laboratory (CSAIL) Anant Agarwal asked attendees if the current approach to exascale computing is radical enough.

Agarwal focused on the targets set by the Ubiquitous High Performance Computing (UHPC) set forth by DARPA, claiming that the debates have centered on increasing performance while reducing energy but that the challenges are far greater than mere energy. Agarwal argues that the other great hurdles lie in programmability and resiliency—and that to arrive at solutions for these problems, “disruptive research” is required. This kind of research will focus on the fact that getting two out the three big problems (performance, efficiency and programmability) will be relatively “easy” getting all three right presents significant challenges.

NVIDIA’s Bill Dally echoed some of Agarwal’s assertions in his presentation, “Power and Programmability: The Challenges of Exascale Computing” in which he proclaimed the end to historic levels of scaling, citing challenges related to power and code.

In his presentation, Dally claimed that it’s not about the FLOPs any longer, it’s about data movement. And further, it’s not simply a matter of power efficiency as we traditionally think about, it’s about locality.

Dally argues that “algorithms should be designed to perform more work per unit data movement” and that “programming systems should further optimize this data movement.” He went to cite the fact that architectures need to facilitate data movement by providing an exposed hierarchy and efficient communication.

In some ways, Dally’s presentation offered some of the “disruptive” ideas Agarwal cited that can radicalize ways of thinking about exascale limitations. Dally’s focus on locality (optimizing data movement versus focusing on the FLOPs; optimizing subdivision and fetching paradigms; offering an exposed storage hierarchy with more efficient communication and bulk transfer) is a break from the norm in terms of offering solutions for exascale challenges—and one that generated rich fodder for the presentation, which you can find in detail here.

Locality was a hot-button issue at this workshop, drawing a detailed, solution-rich presentation from Allan Snavely, associate director of the San Diego Supercomputer Center and adjunct professor in UCSD’s Department of Computer Science and Engineering.

In his presentation, “Whose Job is it to Find Locality?” Snavely dug deeper into some of the initial concepts Dally put forth. Snavely recognized that people seem to be waiting on “magic” compilers and programming languages to come along, for application programmers to suddenly be rendered flawless, or for machines to simply let users choose how to burn up resources.

He claims that the attitude of “LINPACK has lots of locality, so what’s the problem” is the root of a problem as everyone waits for answers to locality problems to fall out of the sky. In his presentation, Snavely proposes a few solutions, including a new approach to the software stack found here.

In addition to moving the conversation out of the theoretical and into the realm of actual solutions, Snavely discussed how his UCSD team is currently developing tools and methodologies that can identify location in applications to reduce the processor frequency for effective power savings and further, working on tools that can automate the process of inserting “frequency throttling calls” into large-scale applications.

The Hunt for Perfect Solutions

The unstated theme of the workshop undoubtedly was focused on out-of-the-box thinking for exascale challenges that provide the “radical” approaches Agarwal and others touched upon. Still, it was useful to pick up on the practical and theoretical issues with presentations from notables, including Thomas Sterling, who discussed Exascale Execution Models, John Shalf who highlighted the past, present and future of exascale computing, and Dave Resnick who looked at the missing links that stand in the way before exascale computing becomes a reality.

Others provided real-world perspectives, including IBM Research Senior Manager, Mootaz Elnozahy, in his presentation on lessons learned from HPCS/PERCS project.

Aside from presentations addressing some of the research and practical challenges of exascale computing, others, including Keren Bergman and Norman Jouppi addressed the future of photonics in the era of exascale while others, including Dave Resnick, focused on memory (in this case Micron’s new memory component, the Hybrid Memory Cube).

With all presentation topics considered collectively, there is evidence that we are moving beyond simple questions about simple power or performance issues and into the realm of disruptive approaches to programming and optimizing for exascale systems. Detailed slides and other materials to further the conversation can be found here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PFAS Regulations, 3M Exit to Impact Two-Phase Cooling in HPC

January 27, 2023

Per- and polyfluoroalkyl substances (PFAS), known as “forever chemicals,” pose a number of health risks to humans, with more suspected but not yet confirmed – and, as a result, PFAS are coming under increasing regu Read more…

Sweden Plans Expansion for Nvidia-Powered Berzelius Supercomputer

January 26, 2023

The Atos-built, Nvidia SuperPod-based Berzelius supercomputer – housed in and operated by Sweden’s Linköping-based National Supercomputer Centre (NSC) – is already no slouch. But now, Nvidia and NSC have announced Read more…

Multiverse, Pasqal, and Crédit Agricole Tout Progress Using Quantum Computing in FS

January 26, 2023

Europe-based quantum computing pioneers Multiverse Computing and Pasqal, and global bank Crédit Agricole CIB today announced successful conclusion of a 1.5-year POC study “to evaluate the contribution of an algorithmi Read more…

Critics Don’t Want Politicians Deciding the Future of Semiconductors

January 26, 2023

The future of the semiconductor industry was partially being decided last week by a mix of politicians, policy hawks and chip industry executives jockeying for influence at the World Economic Forum. Intel CEO Pat Gels Read more…

Riken Plans ‘Virtual Fugaku’ on AWS

January 26, 2023

The development of a national flagship supercomputer aimed at exascale computing continues to be a heated competition, especially in the United States, the European Union, China, and Japan. What is the value to be gained Read more…

AWS Solution Channel

Shutterstock_1687123447

Numerix Scales HPC Workloads for Price and Risk Modeling Using AWS Batch

  • 180x improvement in analytics performance
  • Enhanced risk management
  • Decreased bottlenecks in analytics
  • Unlocked near-real-time analytics
  • Scaled financial analytics

Overview

Numerix, a financial technology company, needed to find a way to scale its high performance computing (HPC) solution as client portfolios ballooned in size. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1453953692

Microsoft and NVIDIA Experts Talk AI Infrastructure

As AI emerges as a crucial tool in so many sectors, it’s clear that the need for optimized AI infrastructure is growing. Going beyond just GPU-based clusters, cloud infrastructure that provides low-latency, high-bandwidth interconnects and high-performance storage can help organizations handle AI workloads more efficiently and produce faster results. Read more…

Supercomputer Research Predicts Extinction Cascade

January 25, 2023

The immediate impacts of climate change and land-use change are severe enough, but increasingly, researchers are warning that large enough changes can then snowball into catastrophic changes. New, supercomputer-powered r Read more…

PFAS Regulations, 3M Exit to Impact Two-Phase Cooling in HPC

January 27, 2023

Per- and polyfluoroalkyl substances (PFAS), known as “forever chemicals,” pose a number of health risks to humans, with more suspected but not yet confirmed Read more…

Critics Don’t Want Politicians Deciding the Future of Semiconductors

January 26, 2023

The future of the semiconductor industry was partially being decided last week by a mix of politicians, policy hawks and chip industry executives jockeying for Read more…

Riken Plans ‘Virtual Fugaku’ on AWS

January 26, 2023

The development of a national flagship supercomputer aimed at exascale computing continues to be a heated competition, especially in the United States, the Euro Read more…

Shutterstock 1134313550

Semiconductor Companies Create Building Block for Chiplet Design

January 24, 2023

Intel's CEO Pat Gelsinger last week made a grand proclamation that chips will be for the next few decades what oil and gas was to the world over the last 50 years. While that remains to be seen, two technology associations are joining hands to develop building blocks to stabilize the development of future chip designs. The goal of the standard is to set the stage for a thriving marketplace that fuels... Read more…

Royalty-free stock photo ID: 1572060865

Fujitsu Study Says Quantum Decryption Threat Still Distant

January 23, 2023

Global computer and chip manufacturer Fujitsu today reported that a new study performed on its 39-qubit quantum simulator suggests it will remain difficult for Read more…

At ORNL, Jeff Smith Becomes Interim Director, as Search for Permanent Lab Chief Continues

January 20, 2023

UT-Battelle, which manages Oak Ridge National Laboratory (ORNL) for the U.S. Department of Energy, has appointed Jeff Smith as interim director for the lab as t Read more…

Top HPC Players Creating New Security Architecture Amid Neglect

January 20, 2023

Security of high-performance computers is being neglected in the pursuit of horsepower, and there are concerns that the ignorance may be costly if safeguards ar Read more…

Ohio Supercomputer Center Debuts ‘Ascend’ GPU Cluster

January 19, 2023

Less than 10 months after it was announced, the Columbus-based Ohio Supercomputer Center (OSC) has debuted its Dell-built GPU cluster, “Ascend.” Designed to Read more…

Leading Solution Providers

Contributors

SC22 Booth Videos

AMD @ SC22
Altair @ SC22
AWS @ SC22
Ayar Labs @ SC22
CoolIT @ SC22
Cornelis Networks @ SC22
DDN @ SC22
Dell Technologies @ SC22
HPE @ SC22
Intel @ SC22
Intelligent Light @ SC22
Lancium @ SC22
Lenovo @ SC22
Microsoft and NVIDIA @ SC22
One Stop Systems @ SC22
Penguin Solutions @ SC22
QCT @ SC22
Supermicro @ SC22
Tuxera @ SC22
Tyan Computer @ SC22
  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire