Taking a Disruptive Approach to Exascale

By Nicole Hemsoth

August 18, 2011

Early in August the U.S. Department of Energy’s Office of Science and Office of Advanced Scientific Computing Research (ASCR) held a workshop called “Exascale and Beyond: Gaps in Research, Gaps in our Thinking” that brought together luminaries from the world of high performance computing to discuss research and practical challenges at exascale.

Given the scope of the short event’s series of discussions, we wanted to highlight a few noteworthy presentations to lend a view into how researchers perceive the coming challenges of exascale computing. While all of the speakers addressed known challenges of exascale computing, most brought their own research and practical experiences from large HPC centers to bear.

For instance, MIT professor of Electrical Engineering and Computer Science and director of the university’s Computer Science and Artificial Intelligence Laboratory (CSAIL) Anant Agarwal asked attendees if the current approach to exascale computing is radical enough.

Agarwal focused on the targets set by the Ubiquitous High Performance Computing (UHPC) set forth by DARPA, claiming that the debates have centered on increasing performance while reducing energy but that the challenges are far greater than mere energy. Agarwal argues that the other great hurdles lie in programmability and resiliency—and that to arrive at solutions for these problems, “disruptive research” is required. This kind of research will focus on the fact that getting two out the three big problems (performance, efficiency and programmability) will be relatively “easy” getting all three right presents significant challenges.

NVIDIA’s Bill Dally echoed some of Agarwal’s assertions in his presentation, “Power and Programmability: The Challenges of Exascale Computing” in which he proclaimed the end to historic levels of scaling, citing challenges related to power and code.

In his presentation, Dally claimed that it’s not about the FLOPs any longer, it’s about data movement. And further, it’s not simply a matter of power efficiency as we traditionally think about, it’s about locality.

Dally argues that “algorithms should be designed to perform more work per unit data movement” and that “programming systems should further optimize this data movement.” He went to cite the fact that architectures need to facilitate data movement by providing an exposed hierarchy and efficient communication.

In some ways, Dally’s presentation offered some of the “disruptive” ideas Agarwal cited that can radicalize ways of thinking about exascale limitations. Dally’s focus on locality (optimizing data movement versus focusing on the FLOPs; optimizing subdivision and fetching paradigms; offering an exposed storage hierarchy with more efficient communication and bulk transfer) is a break from the norm in terms of offering solutions for exascale challenges—and one that generated rich fodder for the presentation, which you can find in detail here.

Locality was a hot-button issue at this workshop, drawing a detailed, solution-rich presentation from Allan Snavely, associate director of the San Diego Supercomputer Center and adjunct professor in UCSD’s Department of Computer Science and Engineering.

In his presentation, “Whose Job is it to Find Locality?” Snavely dug deeper into some of the initial concepts Dally put forth. Snavely recognized that people seem to be waiting on “magic” compilers and programming languages to come along, for application programmers to suddenly be rendered flawless, or for machines to simply let users choose how to burn up resources.

He claims that the attitude of “LINPACK has lots of locality, so what’s the problem” is the root of a problem as everyone waits for answers to locality problems to fall out of the sky. In his presentation, Snavely proposes a few solutions, including a new approach to the software stack found here.

In addition to moving the conversation out of the theoretical and into the realm of actual solutions, Snavely discussed how his UCSD team is currently developing tools and methodologies that can identify location in applications to reduce the processor frequency for effective power savings and further, working on tools that can automate the process of inserting “frequency throttling calls” into large-scale applications.

The Hunt for Perfect Solutions

The unstated theme of the workshop undoubtedly was focused on out-of-the-box thinking for exascale challenges that provide the “radical” approaches Agarwal and others touched upon. Still, it was useful to pick up on the practical and theoretical issues with presentations from notables, including Thomas Sterling, who discussed Exascale Execution Models, John Shalf who highlighted the past, present and future of exascale computing, and Dave Resnick who looked at the missing links that stand in the way before exascale computing becomes a reality.

Others provided real-world perspectives, including IBM Research Senior Manager, Mootaz Elnozahy, in his presentation on lessons learned from HPCS/PERCS project.

Aside from presentations addressing some of the research and practical challenges of exascale computing, others, including Keren Bergman and Norman Jouppi addressed the future of photonics in the era of exascale while others, including Dave Resnick, focused on memory (in this case Micron’s new memory component, the Hybrid Memory Cube).

With all presentation topics considered collectively, there is evidence that we are moving beyond simple questions about simple power or performance issues and into the realm of disruptive approaches to programming and optimizing for exascale systems. Detailed slides and other materials to further the conversation can be found here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This