Taking a Disruptive Approach to Exascale

By Nicole Hemsoth

August 18, 2011

Early in August the U.S. Department of Energy’s Office of Science and Office of Advanced Scientific Computing Research (ASCR) held a workshop called “Exascale and Beyond: Gaps in Research, Gaps in our Thinking” that brought together luminaries from the world of high performance computing to discuss research and practical challenges at exascale.

Given the scope of the short event’s series of discussions, we wanted to highlight a few noteworthy presentations to lend a view into how researchers perceive the coming challenges of exascale computing. While all of the speakers addressed known challenges of exascale computing, most brought their own research and practical experiences from large HPC centers to bear.

For instance, MIT professor of Electrical Engineering and Computer Science and director of the university’s Computer Science and Artificial Intelligence Laboratory (CSAIL) Anant Agarwal asked attendees if the current approach to exascale computing is radical enough.

Agarwal focused on the targets set by the Ubiquitous High Performance Computing (UHPC) set forth by DARPA, claiming that the debates have centered on increasing performance while reducing energy but that the challenges are far greater than mere energy. Agarwal argues that the other great hurdles lie in programmability and resiliency—and that to arrive at solutions for these problems, “disruptive research” is required. This kind of research will focus on the fact that getting two out the three big problems (performance, efficiency and programmability) will be relatively “easy” getting all three right presents significant challenges.

NVIDIA’s Bill Dally echoed some of Agarwal’s assertions in his presentation, “Power and Programmability: The Challenges of Exascale Computing” in which he proclaimed the end to historic levels of scaling, citing challenges related to power and code.

In his presentation, Dally claimed that it’s not about the FLOPs any longer, it’s about data movement. And further, it’s not simply a matter of power efficiency as we traditionally think about, it’s about locality.

Dally argues that “algorithms should be designed to perform more work per unit data movement” and that “programming systems should further optimize this data movement.” He went to cite the fact that architectures need to facilitate data movement by providing an exposed hierarchy and efficient communication.

In some ways, Dally’s presentation offered some of the “disruptive” ideas Agarwal cited that can radicalize ways of thinking about exascale limitations. Dally’s focus on locality (optimizing data movement versus focusing on the FLOPs; optimizing subdivision and fetching paradigms; offering an exposed storage hierarchy with more efficient communication and bulk transfer) is a break from the norm in terms of offering solutions for exascale challenges—and one that generated rich fodder for the presentation, which you can find in detail here.

Locality was a hot-button issue at this workshop, drawing a detailed, solution-rich presentation from Allan Snavely, associate director of the San Diego Supercomputer Center and adjunct professor in UCSD’s Department of Computer Science and Engineering.

In his presentation, “Whose Job is it to Find Locality?” Snavely dug deeper into some of the initial concepts Dally put forth. Snavely recognized that people seem to be waiting on “magic” compilers and programming languages to come along, for application programmers to suddenly be rendered flawless, or for machines to simply let users choose how to burn up resources.

He claims that the attitude of “LINPACK has lots of locality, so what’s the problem” is the root of a problem as everyone waits for answers to locality problems to fall out of the sky. In his presentation, Snavely proposes a few solutions, including a new approach to the software stack found here.

In addition to moving the conversation out of the theoretical and into the realm of actual solutions, Snavely discussed how his UCSD team is currently developing tools and methodologies that can identify location in applications to reduce the processor frequency for effective power savings and further, working on tools that can automate the process of inserting “frequency throttling calls” into large-scale applications.

The Hunt for Perfect Solutions

The unstated theme of the workshop undoubtedly was focused on out-of-the-box thinking for exascale challenges that provide the “radical” approaches Agarwal and others touched upon. Still, it was useful to pick up on the practical and theoretical issues with presentations from notables, including Thomas Sterling, who discussed Exascale Execution Models, John Shalf who highlighted the past, present and future of exascale computing, and Dave Resnick who looked at the missing links that stand in the way before exascale computing becomes a reality.

Others provided real-world perspectives, including IBM Research Senior Manager, Mootaz Elnozahy, in his presentation on lessons learned from HPCS/PERCS project.

Aside from presentations addressing some of the research and practical challenges of exascale computing, others, including Keren Bergman and Norman Jouppi addressed the future of photonics in the era of exascale while others, including Dave Resnick, focused on memory (in this case Micron’s new memory component, the Hybrid Memory Cube).

With all presentation topics considered collectively, there is evidence that we are moving beyond simple questions about simple power or performance issues and into the realm of disruptive approaches to programming and optimizing for exascale systems. Detailed slides and other materials to further the conversation can be found here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This