IBM Specs Out Blue Gene/Q Chip

By Michael Feldman

August 22, 2011

At the Hot Chips conference in Santa Clara last week, IBM lifted the curtain on its Blue Gene/Q SoC, which will soon power some of the highest performing supercomputers in the world. Next year, two DOE labs are slated to boot up the most powerful Blue Gene systems ever deployed: the 10-petaflop “Mira” system at Argonne National Lab, and the 20-petaflop “Sequoia” super at Lawrence Livermore.  Both will employ the latest Blue Gene/Q processor described at the conference.

That, of course, is assuming IBM doesn’t back out of those projects as it did recently with its 10-petaflop Power7-based (PERCS) Blue Waters supercomputer for NCSA at the University of Illinois. The company terminated the contract to build and support the $300 million Blue Waters system based on financial considerations, leaving the NCSA and its NSF sponsor looking for another vendor to fill the void. The DOE is certainly not expecting to endure that fate for their Blue Gene/Q acquisitions.

The unveiling of the Blue Gene/Q SoC last week implies IBM is committed to those DOE machines as well as futures systems. And Unlike the Power7 CPU, which is being used for both enterprise and HPC systems, the Blue Gene technology has always been exclusively designed and built for supercomputing.

 

 

 

 

 

 

 

 

 

 

 

 

 

Both, the Power7 and new Blue Gene SoC use IBM’s 45 nm SOI technology, but the similarity end there. As described at Hot Chips, the BGQ processor is an 18-core CPU, 16 of which will be used for the application, one for the OS, and one held in reserve. And even though the chip is a custom design, it uses the PowerPC A2 core that IBM introduced last year at the International Solid-State Circuits Conference. The architecture represents yet another PowerPC variant, which in this case merges the functionality of network and server processors. IBM is using the A2 architecture to implement PowerEN chips for the more traditional datacenter applications such as edge-of-network processing, intelligent I/O devices in servers, network attached appliances, distributed computing, and streaming applications.

As such, the A2 architecture emphasizes throughput and energy efficiency, running at relatively modest clock speeds. In the case of the Blue Gene/Q implementation, the clock is just 1.6 GHz and consumes a modest 55 watts at peak. To further reduce power consumption, the chip makes extensive use of clock gating.

But thanks to the double-digit core count, support for up to four threads per core, and the quad floating-point unit, it delivers a very respectable 204 gigaflops per processor. Contrast that with the Power7, which at 3.5 GHz and 8 cores delivers about 256 gigaflops, but consumes a hefty 200 watts.

That gives the Blue Gene/Q chip nearly three times the energy efficiency per peak FLOP compared to the more computationally muscular Power7 (3.72 gigaflops/watt versus 1.28 gigaflops/watt). IBM has been able to capture most of that energy efficiency in the Blue Gene/Q servers. The current top-ranked system on the latest Green500 list is a prototype machine that measures 2.1 gigaflops/watt for Linpack, beating even the newest GPU-accelerated machines as well as the Sparc64 VIIIfx-based K supercomputer, the current champ of the TOP500.

Even compared to its Blue Gene predecessors, BGQ represents a step change in performance, thanks to a large bump in both core count and clock frequency. The Blue Gene/Q chip delivers a 15 times as many peak FLOPS its Blue Gene/P counterpart and a 36 times as many as the original Blue Gene/L SoC.

Version Core Architecture Core Count Clock Speed Peak Performance
Blue Gene/L PowerPC 440 2 700 MHz 5.6 Gigaflops
Blue Gene/P PowerPC 450 4 850 MHz 13.6 Gigaflops
Blue Gene/Q PowerPC A2 18 1600 MHz 204.8 Gigaflops

As with Blue Gene/L and P, the Q incarnation uses embedded DRAM (eDRAM), a dynamic random access memory architecture that is integrated onto the processor ASIC. The technology is employed for shared Level 2 cache, replacing the less performant SRAM technology used in traditional CPUs. In the case of Blue Gene/Q, 32 MB of L2 cache have been carved out.

What is brand new for the latest version is transactional memory. According an EE Times report, the addition of transactional memory will give IBM the distinction of becoming the first company to deliver commercial chips with such technology.

Transactional memory is a technology used to simplify parallel programming by protecting shared data from concurrent access. Basically it prevents data from being corrupted by multiple threads when they simultaneously want to read or write a particular item, and does so in a much more transparent way to the application than the traditional locking mechanism in common use today.

The technology can be implemented in both hardware, software, and a combination of the two. It has been studied by a number of vendors over the years, most notably Intel, Microsoft, and Sun Microsystems. According to the EE Times report, IBM’s implementation exploits the high performance on-chip eDRAM to achieve better latency compared to traditional locking schemes.

If everything goes according to plan, the new processor will elevate the Blue Gene franchise into the double-digit petaflops realm. The aforementioned Mira and Sequoia, taken together, represent 30 petaflops of supercomputing and will both be top 10 systems in 2012.  Sequoia, in particular, is positioned to be the top-ranked supercomputer next year, assuming no surprises from China or elsewhere.

Whether the BGQ architecture is the end of the line for the Blue Gene franchise is an open question. As of today, there is no R system on the roadmap and IBM seems to be leaning toward a Power-architecture-only strategy for its custom supercomputing lineup. Even if IBM is able to repurpose the cores of other PowerPC architectures, designing and implementing a custom SoC for a single niche market, albeit a high-margin one, is an expensive proposition.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflops Tianhe-2 and currently with the 93-petaflops TaihuLight. T Read more…

By Tiffany Trader

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present usability and programmability problems that flummox IT shops. Read more…

By Doug Black

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger communities? That question is at the heart of a new study pub Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Google Launches Site to Share its NYC-based Algorithm Research

August 22, 2017

Much of Google’s algorithm development occurs in groups scattered throughout New York City. Yesterday, Google launched a single website - NYC Algorithms and Optimization Team page - to provide a deeper view into all of Read more…

By John Russell

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflop Read more…

By Tiffany Trader

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present u Read more…

By Doug Black

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger c Read more…

By Tiffany Trader

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Leading Solution Providers

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Singularity HPC Container Technology Moves Out of the Lab

May 4, 2017

Last week, Singularity – the fast-growing HPC container technology whose development has been spearheaded by Gregory Kurtzer at Lawrence Berkeley National Lab Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This