IBM Specs Out Blue Gene/Q Chip

By Michael Feldman

August 22, 2011

At the Hot Chips conference in Santa Clara last week, IBM lifted the curtain on its Blue Gene/Q SoC, which will soon power some of the highest performing supercomputers in the world. Next year, two DOE labs are slated to boot up the most powerful Blue Gene systems ever deployed: the 10-petaflop “Mira” system at Argonne National Lab, and the 20-petaflop “Sequoia” super at Lawrence Livermore.  Both will employ the latest Blue Gene/Q processor described at the conference.

That, of course, is assuming IBM doesn’t back out of those projects as it did recently with its 10-petaflop Power7-based (PERCS) Blue Waters supercomputer for NCSA at the University of Illinois. The company terminated the contract to build and support the $300 million Blue Waters system based on financial considerations, leaving the NCSA and its NSF sponsor looking for another vendor to fill the void. The DOE is certainly not expecting to endure that fate for their Blue Gene/Q acquisitions.

The unveiling of the Blue Gene/Q SoC last week implies IBM is committed to those DOE machines as well as futures systems. And Unlike the Power7 CPU, which is being used for both enterprise and HPC systems, the Blue Gene technology has always been exclusively designed and built for supercomputing.

 

 

 

 

 

 

 

 

 

 

 

 

 

Both, the Power7 and new Blue Gene SoC use IBM’s 45 nm SOI technology, but the similarity end there. As described at Hot Chips, the BGQ processor is an 18-core CPU, 16 of which will be used for the application, one for the OS, and one held in reserve. And even though the chip is a custom design, it uses the PowerPC A2 core that IBM introduced last year at the International Solid-State Circuits Conference. The architecture represents yet another PowerPC variant, which in this case merges the functionality of network and server processors. IBM is using the A2 architecture to implement PowerEN chips for the more traditional datacenter applications such as edge-of-network processing, intelligent I/O devices in servers, network attached appliances, distributed computing, and streaming applications.

As such, the A2 architecture emphasizes throughput and energy efficiency, running at relatively modest clock speeds. In the case of the Blue Gene/Q implementation, the clock is just 1.6 GHz and consumes a modest 55 watts at peak. To further reduce power consumption, the chip makes extensive use of clock gating.

But thanks to the double-digit core count, support for up to four threads per core, and the quad floating-point unit, it delivers a very respectable 204 gigaflops per processor. Contrast that with the Power7, which at 3.5 GHz and 8 cores delivers about 256 gigaflops, but consumes a hefty 200 watts.

That gives the Blue Gene/Q chip nearly three times the energy efficiency per peak FLOP compared to the more computationally muscular Power7 (3.72 gigaflops/watt versus 1.28 gigaflops/watt). IBM has been able to capture most of that energy efficiency in the Blue Gene/Q servers. The current top-ranked system on the latest Green500 list is a prototype machine that measures 2.1 gigaflops/watt for Linpack, beating even the newest GPU-accelerated machines as well as the Sparc64 VIIIfx-based K supercomputer, the current champ of the TOP500.

Even compared to its Blue Gene predecessors, BGQ represents a step change in performance, thanks to a large bump in both core count and clock frequency. The Blue Gene/Q chip delivers a 15 times as many peak FLOPS its Blue Gene/P counterpart and a 36 times as many as the original Blue Gene/L SoC.

Version Core Architecture Core Count Clock Speed Peak Performance
Blue Gene/L PowerPC 440 2 700 MHz 5.6 Gigaflops
Blue Gene/P PowerPC 450 4 850 MHz 13.6 Gigaflops
Blue Gene/Q PowerPC A2 18 1600 MHz 204.8 Gigaflops

As with Blue Gene/L and P, the Q incarnation uses embedded DRAM (eDRAM), a dynamic random access memory architecture that is integrated onto the processor ASIC. The technology is employed for shared Level 2 cache, replacing the less performant SRAM technology used in traditional CPUs. In the case of Blue Gene/Q, 32 MB of L2 cache have been carved out.

What is brand new for the latest version is transactional memory. According an EE Times report, the addition of transactional memory will give IBM the distinction of becoming the first company to deliver commercial chips with such technology.

Transactional memory is a technology used to simplify parallel programming by protecting shared data from concurrent access. Basically it prevents data from being corrupted by multiple threads when they simultaneously want to read or write a particular item, and does so in a much more transparent way to the application than the traditional locking mechanism in common use today.

The technology can be implemented in both hardware, software, and a combination of the two. It has been studied by a number of vendors over the years, most notably Intel, Microsoft, and Sun Microsystems. According to the EE Times report, IBM’s implementation exploits the high performance on-chip eDRAM to achieve better latency compared to traditional locking schemes.

If everything goes according to plan, the new processor will elevate the Blue Gene franchise into the double-digit petaflops realm. The aforementioned Mira and Sequoia, taken together, represent 30 petaflops of supercomputing and will both be top 10 systems in 2012.  Sequoia, in particular, is positioned to be the top-ranked supercomputer next year, assuming no surprises from China or elsewhere.

Whether the BGQ architecture is the end of the line for the Blue Gene franchise is an open question. As of today, there is no R system on the roadmap and IBM seems to be leaning toward a Power-architecture-only strategy for its custom supercomputing lineup. Even if IBM is able to repurpose the cores of other PowerPC architectures, designing and implementing a custom SoC for a single niche market, albeit a high-margin one, is an expensive proposition.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This