IBM Specs Out Blue Gene/Q Chip

By Michael Feldman

August 22, 2011

At the Hot Chips conference in Santa Clara last week, IBM lifted the curtain on its Blue Gene/Q SoC, which will soon power some of the highest performing supercomputers in the world. Next year, two DOE labs are slated to boot up the most powerful Blue Gene systems ever deployed: the 10-petaflop “Mira” system at Argonne National Lab, and the 20-petaflop “Sequoia” super at Lawrence Livermore.  Both will employ the latest Blue Gene/Q processor described at the conference.

That, of course, is assuming IBM doesn’t back out of those projects as it did recently with its 10-petaflop Power7-based (PERCS) Blue Waters supercomputer for NCSA at the University of Illinois. The company terminated the contract to build and support the $300 million Blue Waters system based on financial considerations, leaving the NCSA and its NSF sponsor looking for another vendor to fill the void. The DOE is certainly not expecting to endure that fate for their Blue Gene/Q acquisitions.

The unveiling of the Blue Gene/Q SoC last week implies IBM is committed to those DOE machines as well as futures systems. And Unlike the Power7 CPU, which is being used for both enterprise and HPC systems, the Blue Gene technology has always been exclusively designed and built for supercomputing.

 

 

 

 

 

 

 

 

 

 

 

 

 

Both, the Power7 and new Blue Gene SoC use IBM’s 45 nm SOI technology, but the similarity end there. As described at Hot Chips, the BGQ processor is an 18-core CPU, 16 of which will be used for the application, one for the OS, and one held in reserve. And even though the chip is a custom design, it uses the PowerPC A2 core that IBM introduced last year at the International Solid-State Circuits Conference. The architecture represents yet another PowerPC variant, which in this case merges the functionality of network and server processors. IBM is using the A2 architecture to implement PowerEN chips for the more traditional datacenter applications such as edge-of-network processing, intelligent I/O devices in servers, network attached appliances, distributed computing, and streaming applications.

As such, the A2 architecture emphasizes throughput and energy efficiency, running at relatively modest clock speeds. In the case of the Blue Gene/Q implementation, the clock is just 1.6 GHz and consumes a modest 55 watts at peak. To further reduce power consumption, the chip makes extensive use of clock gating.

But thanks to the double-digit core count, support for up to four threads per core, and the quad floating-point unit, it delivers a very respectable 204 gigaflops per processor. Contrast that with the Power7, which at 3.5 GHz and 8 cores delivers about 256 gigaflops, but consumes a hefty 200 watts.

That gives the Blue Gene/Q chip nearly three times the energy efficiency per peak FLOP compared to the more computationally muscular Power7 (3.72 gigaflops/watt versus 1.28 gigaflops/watt). IBM has been able to capture most of that energy efficiency in the Blue Gene/Q servers. The current top-ranked system on the latest Green500 list is a prototype machine that measures 2.1 gigaflops/watt for Linpack, beating even the newest GPU-accelerated machines as well as the Sparc64 VIIIfx-based K supercomputer, the current champ of the TOP500.

Even compared to its Blue Gene predecessors, BGQ represents a step change in performance, thanks to a large bump in both core count and clock frequency. The Blue Gene/Q chip delivers a 15 times as many peak FLOPS its Blue Gene/P counterpart and a 36 times as many as the original Blue Gene/L SoC.

Version Core Architecture Core Count Clock Speed Peak Performance
Blue Gene/L PowerPC 440 2 700 MHz 5.6 Gigaflops
Blue Gene/P PowerPC 450 4 850 MHz 13.6 Gigaflops
Blue Gene/Q PowerPC A2 18 1600 MHz 204.8 Gigaflops

As with Blue Gene/L and P, the Q incarnation uses embedded DRAM (eDRAM), a dynamic random access memory architecture that is integrated onto the processor ASIC. The technology is employed for shared Level 2 cache, replacing the less performant SRAM technology used in traditional CPUs. In the case of Blue Gene/Q, 32 MB of L2 cache have been carved out.

What is brand new for the latest version is transactional memory. According an EE Times report, the addition of transactional memory will give IBM the distinction of becoming the first company to deliver commercial chips with such technology.

Transactional memory is a technology used to simplify parallel programming by protecting shared data from concurrent access. Basically it prevents data from being corrupted by multiple threads when they simultaneously want to read or write a particular item, and does so in a much more transparent way to the application than the traditional locking mechanism in common use today.

The technology can be implemented in both hardware, software, and a combination of the two. It has been studied by a number of vendors over the years, most notably Intel, Microsoft, and Sun Microsystems. According to the EE Times report, IBM’s implementation exploits the high performance on-chip eDRAM to achieve better latency compared to traditional locking schemes.

If everything goes according to plan, the new processor will elevate the Blue Gene franchise into the double-digit petaflops realm. The aforementioned Mira and Sequoia, taken together, represent 30 petaflops of supercomputing and will both be top 10 systems in 2012.  Sequoia, in particular, is positioned to be the top-ranked supercomputer next year, assuming no surprises from China or elsewhere.

Whether the BGQ architecture is the end of the line for the Blue Gene franchise is an open question. As of today, there is no R system on the roadmap and IBM seems to be leaning toward a Power-architecture-only strategy for its custom supercomputing lineup. Even if IBM is able to repurpose the cores of other PowerPC architectures, designing and implementing a custom SoC for a single niche market, albeit a high-margin one, is an expensive proposition.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Google’s Bill Magro, an HPCwire Person to Watch in 2021

June 11, 2021

Last Fall Bill Magro joined Google as CTO of HPC, a newly created position, after two decades at Intel, where he was responsible for the company's HPC strategy. This interview was conducted by email at the beginning of A Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their correspondingly powerful cooling systems. As a result, these Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, with the U.K.-based Cambridge Quantum Computing (CQC), which Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled its in-person component with a couple months’ notice, ISC Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

AWS Solution Channel

Building highly-available HPC infrastructure on AWS

Reminder: You can learn a lot from AWS HPC engineers by subscribing to the HPC Tech Short YouTube channel, and following the AWS HPC Blog channel. Read more…

Space Weather Prediction Gets a Supercomputing Boost

June 9, 2021

Solar winds are a hot topic in the HPC world right now, with supercomputer-powered research spanning from the Princeton Plasma Physics Laboratory (which used Oak Ridge’s Titan system) to University College London (which used resources from the DiRAC HPC facility). One of the larger... Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their c Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

What is Thermodynamic Computing and Could It Become Important?

June 3, 2021

What, exactly, is thermodynamic computing? (Yes, we know everything obeys thermodynamic laws.) A trio of researchers from Microsoft, UC San Diego, and Georgia Tech have written an interesting viewpoint in the June issue... Read more…

AMD Introduces 3D Chiplets, Demos Vertical Cache on Zen 3 CPUs

June 2, 2021

At Computex 2021, held virtually this week, AMD showcased a new 3D chiplet architecture that will be used for future high-performance computing products set to Read more…

Nvidia Expands Its Certified Server Models, Unveils DGX SuperPod Subscriptions

June 2, 2021

Nvidia is busy this week at the virtual Computex 2021 Taipei technology show, announcing an expansion of its nascent Nvidia-certified server program, a range of Read more…

Using HPC Cloud, Researchers Investigate the COVID-19 Lab Leak Hypothesis

May 27, 2021

At the end of 2019, strange pneumonia cases started cropping up in Wuhan, China. As Wuhan (then China, then the world) scrambled to contain what would, of cours Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire