The Rise of the Thinking Machine

By Michael Feldman

August 25, 2011

This year has seen some notable advancements in computer-based brain mimicry, not just on the artificial intelligence (AI) front, but also related to in silico brain simulations.

Watson’s vanquishing of Jeopardy champions Brad Rutter and Ken Jennings in February set the stage for the year.  The now world-famous IBM super exhibited a sophisticated understanding of language semantics along with the ability to integrate that understanding into a complex analytics engine.  Since the Jeopardy match, IBM has been looking to take the technology into the commercial realm, most notably in the health care arena. 

Meanwhile projects like FACETS (Fast Analog Computing with Emergent Transient States) and SpiNNaker are working to uncover the nature of the brain at the level of the neuron.  The goal here is not to create any kind of artificial intelligence system a la Watson, but rather to simulate the neuronal network of the brain for basic science research.

SpiNNaker, a multi-year project run out of the UK at the University of Manchester, also is attempting to map the brain’s low-level biological structure and function. In June, the project received its first batch of custom-built ARM processors that will eventually power a 50 thousand-node neural network supercomputer.

The FACETS project, managed by the University of Heidelberg, actually wrapped up last year. It’s sequel, BrainScaleS project booted up in January 2011, with the idea of developing of a “brain-inspired computer architecture” based on a custom-designed neural network hardware.  BrainScaleS has links to Henry Markram’s famous Blue Brain work.

Blue Brain, based at the École Polytechnique Fédérale in Lausanne (EPFL), is perhaps the best-known of the brain mimicry projects. The idea is to perform detailed simulations of the brain at the scale of the neuronal network.  In this case though, the work was done with conventional supercomputing hardware (if you can call Blue Gene conventional). The project has successfully simulated a rat cortical column.

The follow-on to Blue Brain, also headed by Markram, is the Human Brain Project. The goal here is to move from rats to human and simulate the entire brain.

The other bookend to the Watson AI story is also from IBM. Last week, the company unveiled their cognitive computing chips.  This is basic research as well, but IBM is aiming the technology at developing thinking machines, rather than just using it to elucidate the workings of the brain.

I queried Markram about the significance to IBM’s latest chippery, who responded thusly: “This is a very important technology step. There are still many challenges ahead, but neuromorphic chips like IBM’s are bound to become key processing units in hybrid architectures of future computers.”  He also recognized the work at FACETS/BrainScaleS and SpiNNaker as contributing to this growing body of knowledge.

So what does it all mean?  For those of you who read about such development in the popular press, there has been plenty of speculation about the future of artificial brains.  A lot of this is centered around how such technology will impact the human condition, particular how intelligent computers will displace human labor.

The big question is if such technology will ultimately benefit people or merely make them superfluous.  Edward Tenner,  a historian of technology and culture with a Ph.d in European history, believes it will be the former.  From a piece he penned in The Atlantic:

 
Will people be obsolete? I doubt it. The economic theory of comparative advantage explains why. Assuming there will still be people, even if the computers are running everything, it will pay for them to let people do what they are relatively better at. There’s likely to be a higher opportunity cost for computers to do more intuitive analysis for which human brain-body system has evolved and concentrate on tasks at which their abilities are an even high-multiple than people’s. In the case of computers and people, as I suggested about IBM’s Watson and Jeopardy! there will always be elements of tacit knowledge and common sense that will be extremely expensive to achieve electronically.

His premise is that it will always be cheaper and more effective to have a real live human provide answers that involve intuition.  “So even if, for example, computers surpass physicians on diagnostic reasoning,” he writes, “it will be cheaper, more effective, and safer to have their judgment double-checked by a real doctor.

Maybe.  But I think one of the article’s commenters nailed it pretty well when he suggests that the real question is not whether computers will replace all labor, but how many jobs will be displaced by intelligent machines and how that impacts our traditional economic model.  He writes:

In classical economics, employers furnish the capital, and workers produce raw materials and finished goods or services.  There is tension between worker and management: both need each other, but both want a bigger piece of the profits from work; each has a strong bargaining position, and the compromise they reach determines wages and benefits.  But what’s playing out on the world stage isn’t classical economics at all.  With every passing year, owners of capital are relying less on workers and more on machines.  The balance has shifted in favor of owners of capital.

We don’t have to wait for the future to see this play out.  It’s been happening for decades, as businesses large and small have adopted IT.  The commenter notes that multinational tech manufacture Foxconn will be shedding a million of its million and half workers manufacturing circuit boards over the next two years, thanks to assembly line robotics.

We’ve certainly seen similar downsizing across the manufacturing sector in general. A century ago, the same process happened in agriculture, a sector whose labor base continues to decline.  It’s not that the industries are shrinking, just their labor force.

With the introduction of more sophisticated computing,  machines are moving higher up the food chain. For example, over the last three decades at JP Morgan, profitability has risen by a factor of 30, but employee head count has only doubled. That’s directly attributable to computer technology raising productivity.

The advent of really intelligent machines like Watson and its neuromorphic brethren will accelerate all this, in ways we can only imagine.  Even industries that are enjoying relatively rapid job growth today, like professional services, education, and health care, will eventually be impacted.

From my perspective, the key problem is that our social and economic systems are not ready for this.  While everyone is fixated on globalization, I think that’s a side show compared to what will happen — and is happening — as intelligent technology displaces human labor worldwide.

It’s not just that people who have invested years of specialized training will find their jobs threatened.  As the commenter noted above, the balance between capital and labor is shifting rapidly in favor of capital as the labor force is squeezed into fewer and fewer jobs that resist automation.  The hope is that other industries will emerge to engage the masses again, as happened after the agricultural and industrial revolutions.  But this time may be different.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This