The Rise of the Thinking Machine

By Michael Feldman

August 25, 2011

This year has seen some notable advancements in computer-based brain mimicry, not just on the artificial intelligence (AI) front, but also related to in silico brain simulations.

Watson’s vanquishing of Jeopardy champions Brad Rutter and Ken Jennings in February set the stage for the year.  The now world-famous IBM super exhibited a sophisticated understanding of language semantics along with the ability to integrate that understanding into a complex analytics engine.  Since the Jeopardy match, IBM has been looking to take the technology into the commercial realm, most notably in the health care arena. 

Meanwhile projects like FACETS (Fast Analog Computing with Emergent Transient States) and SpiNNaker are working to uncover the nature of the brain at the level of the neuron.  The goal here is not to create any kind of artificial intelligence system a la Watson, but rather to simulate the neuronal network of the brain for basic science research.

SpiNNaker, a multi-year project run out of the UK at the University of Manchester, also is attempting to map the brain’s low-level biological structure and function. In June, the project received its first batch of custom-built ARM processors that will eventually power a 50 thousand-node neural network supercomputer.

The FACETS project, managed by the University of Heidelberg, actually wrapped up last year. It’s sequel, BrainScaleS project booted up in January 2011, with the idea of developing of a “brain-inspired computer architecture” based on a custom-designed neural network hardware.  BrainScaleS has links to Henry Markram’s famous Blue Brain work.

Blue Brain, based at the École Polytechnique Fédérale in Lausanne (EPFL), is perhaps the best-known of the brain mimicry projects. The idea is to perform detailed simulations of the brain at the scale of the neuronal network.  In this case though, the work was done with conventional supercomputing hardware (if you can call Blue Gene conventional). The project has successfully simulated a rat cortical column.

The follow-on to Blue Brain, also headed by Markram, is the Human Brain Project. The goal here is to move from rats to human and simulate the entire brain.

The other bookend to the Watson AI story is also from IBM. Last week, the company unveiled their cognitive computing chips.  This is basic research as well, but IBM is aiming the technology at developing thinking machines, rather than just using it to elucidate the workings of the brain.

I queried Markram about the significance to IBM’s latest chippery, who responded thusly: “This is a very important technology step. There are still many challenges ahead, but neuromorphic chips like IBM’s are bound to become key processing units in hybrid architectures of future computers.”  He also recognized the work at FACETS/BrainScaleS and SpiNNaker as contributing to this growing body of knowledge.

So what does it all mean?  For those of you who read about such development in the popular press, there has been plenty of speculation about the future of artificial brains.  A lot of this is centered around how such technology will impact the human condition, particular how intelligent computers will displace human labor.

The big question is if such technology will ultimately benefit people or merely make them superfluous.  Edward Tenner,  a historian of technology and culture with a Ph.d in European history, believes it will be the former.  From a piece he penned in The Atlantic:

 
Will people be obsolete? I doubt it. The economic theory of comparative advantage explains why. Assuming there will still be people, even if the computers are running everything, it will pay for them to let people do what they are relatively better at. There’s likely to be a higher opportunity cost for computers to do more intuitive analysis for which human brain-body system has evolved and concentrate on tasks at which their abilities are an even high-multiple than people’s. In the case of computers and people, as I suggested about IBM’s Watson and Jeopardy! there will always be elements of tacit knowledge and common sense that will be extremely expensive to achieve electronically.

His premise is that it will always be cheaper and more effective to have a real live human provide answers that involve intuition.  “So even if, for example, computers surpass physicians on diagnostic reasoning,” he writes, “it will be cheaper, more effective, and safer to have their judgment double-checked by a real doctor.

Maybe.  But I think one of the article’s commenters nailed it pretty well when he suggests that the real question is not whether computers will replace all labor, but how many jobs will be displaced by intelligent machines and how that impacts our traditional economic model.  He writes:

In classical economics, employers furnish the capital, and workers produce raw materials and finished goods or services.  There is tension between worker and management: both need each other, but both want a bigger piece of the profits from work; each has a strong bargaining position, and the compromise they reach determines wages and benefits.  But what’s playing out on the world stage isn’t classical economics at all.  With every passing year, owners of capital are relying less on workers and more on machines.  The balance has shifted in favor of owners of capital.

We don’t have to wait for the future to see this play out.  It’s been happening for decades, as businesses large and small have adopted IT.  The commenter notes that multinational tech manufacture Foxconn will be shedding a million of its million and half workers manufacturing circuit boards over the next two years, thanks to assembly line robotics.

We’ve certainly seen similar downsizing across the manufacturing sector in general. A century ago, the same process happened in agriculture, a sector whose labor base continues to decline.  It’s not that the industries are shrinking, just their labor force.

With the introduction of more sophisticated computing,  machines are moving higher up the food chain. For example, over the last three decades at JP Morgan, profitability has risen by a factor of 30, but employee head count has only doubled. That’s directly attributable to computer technology raising productivity.

The advent of really intelligent machines like Watson and its neuromorphic brethren will accelerate all this, in ways we can only imagine.  Even industries that are enjoying relatively rapid job growth today, like professional services, education, and health care, will eventually be impacted.

From my perspective, the key problem is that our social and economic systems are not ready for this.  While everyone is fixated on globalization, I think that’s a side show compared to what will happen — and is happening — as intelligent technology displaces human labor worldwide.

It’s not just that people who have invested years of specialized training will find their jobs threatened.  As the commenter noted above, the balance between capital and labor is shifting rapidly in favor of capital as the labor force is squeezed into fewer and fewer jobs that resist automation.  The hope is that other industries will emerge to engage the masses again, as happened after the agricultural and industrial revolutions.  But this time may be different.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

FPGA-Based Genome Processor Bundles Storage

January 6, 2017

Bio-processor developer Edico Genome is collaborating with storage specialist Dell EMC to bundle computing and storage for analyzing gene-sequencing data. Read more…

By George Leopold

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

Addison Snell: The ‘Wild West’ of HPC Disaggregation

December 16, 2016

We caught up with Addison Snell, CEO of HPC industry watcher Intersect360, at SC16 last month, and Snell had his expected, extensive list of insights into trends driving advanced-scale technology in both the commercial and research sectors. Read more…

By Doug Black

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Deep Learning Paves Way for Better Diagnostics

September 19, 2016

Stanford researchers are leveraging GPU-based machines in the Amazon EC2 cloud to run deep learning workloads with the goal of improving diagnostics for a chronic eye disease, called diabetic retinopathy. The disease is a complication of diabetes that can lead to blindness if blood sugar is poorly controlled. It affects about 45 percent of diabetics and 100 million people worldwide, many in developing nations. Read more…

By Tiffany Trader

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This