The Rise of the Thinking Machine

By Michael Feldman

August 25, 2011

This year has seen some notable advancements in computer-based brain mimicry, not just on the artificial intelligence (AI) front, but also related to in silico brain simulations.

Watson’s vanquishing of Jeopardy champions Brad Rutter and Ken Jennings in February set the stage for the year.  The now world-famous IBM super exhibited a sophisticated understanding of language semantics along with the ability to integrate that understanding into a complex analytics engine.  Since the Jeopardy match, IBM has been looking to take the technology into the commercial realm, most notably in the health care arena. 

Meanwhile projects like FACETS (Fast Analog Computing with Emergent Transient States) and SpiNNaker are working to uncover the nature of the brain at the level of the neuron.  The goal here is not to create any kind of artificial intelligence system a la Watson, but rather to simulate the neuronal network of the brain for basic science research.

SpiNNaker, a multi-year project run out of the UK at the University of Manchester, also is attempting to map the brain’s low-level biological structure and function. In June, the project received its first batch of custom-built ARM processors that will eventually power a 50 thousand-node neural network supercomputer.

The FACETS project, managed by the University of Heidelberg, actually wrapped up last year. It’s sequel, BrainScaleS project booted up in January 2011, with the idea of developing of a “brain-inspired computer architecture” based on a custom-designed neural network hardware.  BrainScaleS has links to Henry Markram’s famous Blue Brain work.

Blue Brain, based at the École Polytechnique Fédérale in Lausanne (EPFL), is perhaps the best-known of the brain mimicry projects. The idea is to perform detailed simulations of the brain at the scale of the neuronal network.  In this case though, the work was done with conventional supercomputing hardware (if you can call Blue Gene conventional). The project has successfully simulated a rat cortical column.

The follow-on to Blue Brain, also headed by Markram, is the Human Brain Project. The goal here is to move from rats to human and simulate the entire brain.

The other bookend to the Watson AI story is also from IBM. Last week, the company unveiled their cognitive computing chips.  This is basic research as well, but IBM is aiming the technology at developing thinking machines, rather than just using it to elucidate the workings of the brain.

I queried Markram about the significance to IBM’s latest chippery, who responded thusly: “This is a very important technology step. There are still many challenges ahead, but neuromorphic chips like IBM’s are bound to become key processing units in hybrid architectures of future computers.”  He also recognized the work at FACETS/BrainScaleS and SpiNNaker as contributing to this growing body of knowledge.

So what does it all mean?  For those of you who read about such development in the popular press, there has been plenty of speculation about the future of artificial brains.  A lot of this is centered around how such technology will impact the human condition, particular how intelligent computers will displace human labor.

The big question is if such technology will ultimately benefit people or merely make them superfluous.  Edward Tenner,  a historian of technology and culture with a Ph.d in European history, believes it will be the former.  From a piece he penned in The Atlantic:

 
Will people be obsolete? I doubt it. The economic theory of comparative advantage explains why. Assuming there will still be people, even if the computers are running everything, it will pay for them to let people do what they are relatively better at. There’s likely to be a higher opportunity cost for computers to do more intuitive analysis for which human brain-body system has evolved and concentrate on tasks at which their abilities are an even high-multiple than people’s. In the case of computers and people, as I suggested about IBM’s Watson and Jeopardy! there will always be elements of tacit knowledge and common sense that will be extremely expensive to achieve electronically.

His premise is that it will always be cheaper and more effective to have a real live human provide answers that involve intuition.  “So even if, for example, computers surpass physicians on diagnostic reasoning,” he writes, “it will be cheaper, more effective, and safer to have their judgment double-checked by a real doctor.

Maybe.  But I think one of the article’s commenters nailed it pretty well when he suggests that the real question is not whether computers will replace all labor, but how many jobs will be displaced by intelligent machines and how that impacts our traditional economic model.  He writes:

In classical economics, employers furnish the capital, and workers produce raw materials and finished goods or services.  There is tension between worker and management: both need each other, but both want a bigger piece of the profits from work; each has a strong bargaining position, and the compromise they reach determines wages and benefits.  But what’s playing out on the world stage isn’t classical economics at all.  With every passing year, owners of capital are relying less on workers and more on machines.  The balance has shifted in favor of owners of capital.

We don’t have to wait for the future to see this play out.  It’s been happening for decades, as businesses large and small have adopted IT.  The commenter notes that multinational tech manufacture Foxconn will be shedding a million of its million and half workers manufacturing circuit boards over the next two years, thanks to assembly line robotics.

We’ve certainly seen similar downsizing across the manufacturing sector in general. A century ago, the same process happened in agriculture, a sector whose labor base continues to decline.  It’s not that the industries are shrinking, just their labor force.

With the introduction of more sophisticated computing,  machines are moving higher up the food chain. For example, over the last three decades at JP Morgan, profitability has risen by a factor of 30, but employee head count has only doubled. That’s directly attributable to computer technology raising productivity.

The advent of really intelligent machines like Watson and its neuromorphic brethren will accelerate all this, in ways we can only imagine.  Even industries that are enjoying relatively rapid job growth today, like professional services, education, and health care, will eventually be impacted.

From my perspective, the key problem is that our social and economic systems are not ready for this.  While everyone is fixated on globalization, I think that’s a side show compared to what will happen — and is happening — as intelligent technology displaces human labor worldwide.

It’s not just that people who have invested years of specialized training will find their jobs threatened.  As the commenter noted above, the balance between capital and labor is shifting rapidly in favor of capital as the labor force is squeezed into fewer and fewer jobs that resist automation.  The hope is that other industries will emerge to engage the masses again, as happened after the agricultural and industrial revolutions.  But this time may be different.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

KAUST Leverages Mixed Precision for Geospatial Data

July 28, 2021

For many computationally intensive tasks, exacting precision is not necessary for every step of the entire task to obtain a suitably precise result. The alternative is mixed-precision computing: using high precision wher Read more…

Oak Ridge Supercomputer Enables Next-Gen Jet Turbine Research

July 27, 2021

Air travel is notoriously carbon-inefficient, with many airlines going as far as to offer purchasable carbon offsets to ease the guilt over large-footprint travel. But even over just the last decade, major aircraft model Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IBM Quantum System One assembled outside the U.S. and follows Read more…

AWS Solution Channel

Data compression with increased performance and lower costs

Many customers associate a performance cost with data compression, but that’s not the case with Amazon FSx for Lustre. With FSx for Lustre, data compression reduces storage costs and increases aggregate file system throughput. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire