The Rise of the Thinking Machine

By Michael Feldman

August 25, 2011

This year has seen some notable advancements in computer-based brain mimicry, not just on the artificial intelligence (AI) front, but also related to in silico brain simulations.

Watson’s vanquishing of Jeopardy champions Brad Rutter and Ken Jennings in February set the stage for the year.  The now world-famous IBM super exhibited a sophisticated understanding of language semantics along with the ability to integrate that understanding into a complex analytics engine.  Since the Jeopardy match, IBM has been looking to take the technology into the commercial realm, most notably in the health care arena. 

Meanwhile projects like FACETS (Fast Analog Computing with Emergent Transient States) and SpiNNaker are working to uncover the nature of the brain at the level of the neuron.  The goal here is not to create any kind of artificial intelligence system a la Watson, but rather to simulate the neuronal network of the brain for basic science research.

SpiNNaker, a multi-year project run out of the UK at the University of Manchester, also is attempting to map the brain’s low-level biological structure and function. In June, the project received its first batch of custom-built ARM processors that will eventually power a 50 thousand-node neural network supercomputer.

The FACETS project, managed by the University of Heidelberg, actually wrapped up last year. It’s sequel, BrainScaleS project booted up in January 2011, with the idea of developing of a “brain-inspired computer architecture” based on a custom-designed neural network hardware.  BrainScaleS has links to Henry Markram’s famous Blue Brain work.

Blue Brain, based at the École Polytechnique Fédérale in Lausanne (EPFL), is perhaps the best-known of the brain mimicry projects. The idea is to perform detailed simulations of the brain at the scale of the neuronal network.  In this case though, the work was done with conventional supercomputing hardware (if you can call Blue Gene conventional). The project has successfully simulated a rat cortical column.

The follow-on to Blue Brain, also headed by Markram, is the Human Brain Project. The goal here is to move from rats to human and simulate the entire brain.

The other bookend to the Watson AI story is also from IBM. Last week, the company unveiled their cognitive computing chips.  This is basic research as well, but IBM is aiming the technology at developing thinking machines, rather than just using it to elucidate the workings of the brain.

I queried Markram about the significance to IBM’s latest chippery, who responded thusly: “This is a very important technology step. There are still many challenges ahead, but neuromorphic chips like IBM’s are bound to become key processing units in hybrid architectures of future computers.”  He also recognized the work at FACETS/BrainScaleS and SpiNNaker as contributing to this growing body of knowledge.

So what does it all mean?  For those of you who read about such development in the popular press, there has been plenty of speculation about the future of artificial brains.  A lot of this is centered around how such technology will impact the human condition, particular how intelligent computers will displace human labor.

The big question is if such technology will ultimately benefit people or merely make them superfluous.  Edward Tenner,  a historian of technology and culture with a Ph.d in European history, believes it will be the former.  From a piece he penned in The Atlantic:

 
Will people be obsolete? I doubt it. The economic theory of comparative advantage explains why. Assuming there will still be people, even if the computers are running everything, it will pay for them to let people do what they are relatively better at. There’s likely to be a higher opportunity cost for computers to do more intuitive analysis for which human brain-body system has evolved and concentrate on tasks at which their abilities are an even high-multiple than people’s. In the case of computers and people, as I suggested about IBM’s Watson and Jeopardy! there will always be elements of tacit knowledge and common sense that will be extremely expensive to achieve electronically.

His premise is that it will always be cheaper and more effective to have a real live human provide answers that involve intuition.  “So even if, for example, computers surpass physicians on diagnostic reasoning,” he writes, “it will be cheaper, more effective, and safer to have their judgment double-checked by a real doctor.

Maybe.  But I think one of the article’s commenters nailed it pretty well when he suggests that the real question is not whether computers will replace all labor, but how many jobs will be displaced by intelligent machines and how that impacts our traditional economic model.  He writes:

In classical economics, employers furnish the capital, and workers produce raw materials and finished goods or services.  There is tension between worker and management: both need each other, but both want a bigger piece of the profits from work; each has a strong bargaining position, and the compromise they reach determines wages and benefits.  But what’s playing out on the world stage isn’t classical economics at all.  With every passing year, owners of capital are relying less on workers and more on machines.  The balance has shifted in favor of owners of capital.

We don’t have to wait for the future to see this play out.  It’s been happening for decades, as businesses large and small have adopted IT.  The commenter notes that multinational tech manufacture Foxconn will be shedding a million of its million and half workers manufacturing circuit boards over the next two years, thanks to assembly line robotics.

We’ve certainly seen similar downsizing across the manufacturing sector in general. A century ago, the same process happened in agriculture, a sector whose labor base continues to decline.  It’s not that the industries are shrinking, just their labor force.

With the introduction of more sophisticated computing,  machines are moving higher up the food chain. For example, over the last three decades at JP Morgan, profitability has risen by a factor of 30, but employee head count has only doubled. That’s directly attributable to computer technology raising productivity.

The advent of really intelligent machines like Watson and its neuromorphic brethren will accelerate all this, in ways we can only imagine.  Even industries that are enjoying relatively rapid job growth today, like professional services, education, and health care, will eventually be impacted.

From my perspective, the key problem is that our social and economic systems are not ready for this.  While everyone is fixated on globalization, I think that’s a side show compared to what will happen — and is happening — as intelligent technology displaces human labor worldwide.

It’s not just that people who have invested years of specialized training will find their jobs threatened.  As the commenter noted above, the balance between capital and labor is shifting rapidly in favor of capital as the labor force is squeezed into fewer and fewer jobs that resist automation.  The hope is that other industries will emerge to engage the masses again, as happened after the agricultural and industrial revolutions.  But this time may be different.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This