Exascale: Power Is Not the Problem!

By Andrew Jones

August 29, 2011

To build exascale systems, power is probably the biggest technical hurdle on the hardware side. In terms of getting to exascale computing, demonstrating the value of supercomputing to funders and the public is a more urgent challenge. But the top roadblock for realizing the potential benefits from exascale is software.

That title is probably controversial to most readers. It is likely that if you asked members of the supercomputing community what is the single biggest challenge for exascale computing, the most common answer would be “power.” It is widely reported, widely talked about, and in many places, generally accepted that finding a few orders of magnitude improvement in power consumption is the biggest roadblock on the way to viable exascale computing. Otherwise, the first exascale computers will require 60MW, 120MW or 200MW — pick your favorite horror figure. I’m not so convinced.

I’m not saying the power estimates for exascale computing are not a problem — they are — but they are not the problem. Because, in the end, it is just a money problem. For most in the community, the objection is not so much to the fact of 60-plus MW supercomputers. Instead, the objection is the resulting operating costs of 60-plus MW supercomputers. We simply don’t want to pay $60 million each year for electricity (or more precisely we don’t want to have to justify to someone else — e.g., funding agencies — that we need to pay that much). But why are we so concerned about large power costs?

Are we really saying, with our concerns over power, that we simply don’t have a good enough case for supercomputing — the science case, business case, track record of innovation delivery, and so on? Surely if supercomputing is that essential, as we keep arguing, then the cost of the power is worth it.

There are several large scientific facilities that have comparable power requirements, often with much narrower missions — remember that supercomputing can advance almost all scientific disciplines — for example, LHC, ITER, NIF, and SNS. And indeed, most of the science communities behind those facilities are also large users of supercomputing.

I occasionally say, glibly and deliberately provocatively, if the scientific community can justify billions of dollars, 100MW of power, and thousands of staff in order to fire tiny particles that most people have never heard of around a big ring of magnets for a fairly narrow science purpose that most people will never understand, then how come we can’t make a case for a facility needing only half of those resources that can do wonders for a whole range of science problems and industrial applications?

[There is a partial answer to that, which I have addressed on my HPC Notes blog to avoid distraction here.]

But secondly, and more importantly, the power problem can be solved with enough money if we can make the case. Accepting huge increases in budgets would also go a long way toward solving several of the other challenges of exascale computing. For example, resiliency could be substantially helped if we could afford comprehensive redundancy and other advanced RAS features; data movement challenges could be helped if we could afford huge increases in memory bandwidth at all levels of the system; and so on.

Those technical challenges would not be totally solved but they would be substantially reduced by money. I don’t mean to trivialize those technical challenges, but certainly they could be made much less scary if we weren’t worried about the cost of solutions.

So, the biggest challenge for exascale computing might not be power (or your other favorite architectural roadblock) but rather our ability to justify enough budget to pay for the power, or more expensive hardware, etc. However, beyond even that, there is a class of challenges for which money alone is not enough.

Assume a huge budget meant an exascale computer with good enough resiliency, plenty of memory bandwidth and every other needed architectural attribute was delivered tomorrow, and never mind the power bills. Could we use it? No. Because of a series of challenges that need not only money, but also lots of time to solve, and in most cases need research because we just don’t know the solutions.

I am thinking of the software related challenges.

Even if we have highly favorable architectures (expensive systems with lots of bandwidth, good resiliency, etc.) I think the community and most, if not all, of the applications are still years away from having algorithms and software implementations that can exploit that scale of computing efficiently.

There is a reasonable effort underway to identify the software problems that we might face in using exascale computing (e.g., IESP and EESI). However, in most cases we can only identify the problems; we still don’t have much idea about the solutions. Even where we have a good idea of the way forward, sensible estimates of the effort required to implement software capable of using exascale computing — OS, tools, applications, post-processing, etc. — is measured in years with large teams.

It certainly requires money, but it needs other scarce resources too, specifically time and skills. That involves a large pool of skilled parallel software engineers, scientists with computational expertise, numerical algorithms research and so on. Scarce resources like these are possibly even harder to create than money!

Power is a problem for exascale computing, and with current budget expectations is probably the biggest technical challenge for the hardware. In terms of getting to exascale computing, demonstrating the value of increased investment in supercomputing to funders and the public/media is probably a more urgent challenge. But the top roadblock for achieving the hugely beneficial potential output from exascale computing is software. There are many challenges to do with the software ecosystem that will take years, lots of skilled workers, and sustained/predictable investment to solve.

That “sustained/predictable” is important. Ad-hoc research grants are not an efficient way to plan and conduct a many-year, many-person, community-wide software research and development agenda. Remember that agenda will consume a non-trivial portion of the careers of many of the individuals involved. And when the researchers start out on this necessary software journey, they need confidence that funding will be there all the way to production deployment and ongoing maintenance many years into the future.

About the Author

Andrew is Vice-President of HPC Services and Consulting at the Numerical Algorithms Group (NAG). He was originally a researcher using HPC and developing related software, later becoming involved in leadership of HPC services. He is also interested in exascale, manycore, skills development, broadening usage, and other future concerns of the HPC community.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and the technology challenges ahead. These discussions happened in Read more…

By Alex R. Larzelere

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Leading Solution Providers

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This