Nautilus Harnessed for Humanities Research, Future Prediction

By Nicole Hemsoth

September 9, 2011

The observer influences the events he observes by the mere act of observing them or by being there to observe them.

        –Isaac Asimov, Foundation’s Edge

Elements of science fiction have helped us venture guesses about what the future might look like—at least in terms of the technologies some suspect might be pervasive one day. Flying cars, robot housekeepers, and of course, supercomputers that can predict the future and answer humanity’s most pressing questions, are all staples.

This week news emerged that might bring the all-knowing “supercomputer as fortuneteller” trope into reality—or if nothing quite as dramatic, help us better understand the connections between the news and its tone in geographical context.

A recent project called “Culturomics 2.0: Forecasting Large-Scale Human Behavior Using Global News Media Tone in Time and Space” set about to find a way to use tone and geographical analyses methods to yield new insights about global society.  If the lead researcher behind the project is correct, this could not only provide opportunities for societal research at global scale—but could also act as a warning bell before crises occur.

Kalev H. Leetaru, Assistant Director for Text and Digital Media Analytics at the Institute for Computing in the Humanities, Arts and Social Science at the University of Illinois and Center Affiliate at NCSA spearheaded the Culturomics 2.0 project. He claims that his analytics experiment has already allowed him to successfully forecast recent revolutions in Tunisia, Egypt, and Libya. Leetaru also says that he has been able to foresee stability in Saudi Arabia (at least through May 2011), and retroactively estimate Osama Bin Laden’s likely hiding place within a 200-kilometer radius.

Whereas initial Culturomics (1.0) studies focused on the frequency of a particular set of words from digitized books, he says that mere frequency isn’t enough to gain real-time, imminently useful information that reflects the modern world.

Shedding the word frequency element that defined version 1.0 of Culturomics, Leetaru set to take deep analytics to a new level by moving past frequency altogether and opting instead to sharpen the focus on tone, geography and the associations these two factors produced.

The project received funding from the National Science Foundation and was managed in part by the University of Tennessee’s Remote Data Analysis and Visualization Center (RDAV) and the National Institute for Computational Science (NICS). Leetaru was granted time on the large shared memory supercomputer Nautilus as part of the Extreme Science and Engineering Discovery Environment (XSEDE) program.

Leetaru says using a large shared memory system like the Nautilus was the key to achieving his research goals. The 1,024 Intel Nehalem core, 8.2 teraflop system with 4 terabytes available for big data workloads was manufactured by SGI as part of their UltraViolet product line. A system like this allows researchers more flexibility as they seek to take advantage of vast computing power to analyze “big data” in innovative ways.

Leetaru’s goals with this project represent a perfect example of a data-intensive problem in research. To arrive at his results, Leetaru needed to gather 100 million news articles stretching back half a century. From this point, the process required a staged approach, which began with a data mining algorithm that extracted important terms—people, places and events—to create a base network of 10 billion “nodes” in the network of news history.

With a mere 10 billion elements left following extraction, Leetaru next set about seeking out relationships that connected these nodes to begin building a second network. He said that when this was complete, he was left with a total of 100 trillion relationships, yielding a network that was about 2.4 petabytes in size.

Few machines have that kind of disk space let alone memory so he then found that to process the data, he needed to break the project up into pieces. He would look carefully at key pieces, generate that network on the fly using the shared memory system to begin the process of refining—a task he said wouldn’t be possible without Nautilus or another large shared memory system.

With the connections established, Leetaru then ran tools to seek out patterns to find interesting differences in tone in different countries or regions. Using 1500 dimensions of analysis that fall under the banner of “tone mining” which determines the positive or negative “score” of a dictionary of words from existing sources, Leetaru was able to build a profile of more profound connections.

These variances in tone of global news were matched with geographic mining efforts, which places the nodes and tones via an algorithm that seeks to determine where the news sources are talking about. Leetaru explains that this is not a simple algorithm since there are many cities called “Cairo” in the world. The algorithm must mine for contextual references to nearby places or elements to correctly place the coordinates.

The final element is the network analysis or modularity finding step. Leetaru takes his network and looks for nodes that are more tightly connected to each other than the rest of the network to find out how nations are related—an analytics project that yields a well-defined set of seven civilizations on Earth. To get this kind of network requires taking every city, every article that has ever referenced it, and each city then becomes a node with its own complex network of tones, meanings and potential for new findings.

With all of these stages in place, Leetaru says the possibilities are endless. One can watch change over time and create reproducible models—or even go back to look at past events to see how closely one can predict the end result. In the full paper, Leetaru hits on some of his successes showing how major crises have played out in a particular set of ways—offering a chance for researchers to predict the future.

Leetaru pointed to the benefits of using the shared memory system Nautilus with the example that has generated a lot of buzz this week—that his methods led to a retroactive map that pinpointed Bin Laden’s location within 200 km.

“One of the beauties of using a large shared memory machine is that for example I could see an interesting pattern (like the Bin Laden portion where I was assuming there was enough information to pinpoint where he was hiding) and then begin exploring different techniques, including writing quick little Perl scripts that would wrap a small network on the fly actually and process that material and basically make a quick chart or table or map.”

He went on to note:

“With a large shared memory machine, you don’t have to worry about memory—I never had to worry about writing MPI code to distribute memory across nodes; it’s like it was infinite–with a quick script I could grab all locations that mentioned “Bin Laden” since he first started to appear in the news around 10 years ago, and map it over time or in different ways. It boiled down to writing easy Perl scripts, running in a matter of minutes—if I didn’t have all that memory it would have taken weeks or months with each iteration so one benefit is that leveraging that much hardware allows you to do simple things.”

Leetaru says that even as an undergraduate at NCSA working with some of the first iterations of web-scale web mining, he has been fascinated with the possibilities of deep analytics. While his goal with the Culturomics 2.0 project was to forecast large-scale human behavior using global news media tone in time and space but along the way he stumbled upon a few other unexpected findings, including the fact that indeed, the news is becoming “more negative” in terms of general tone and also that the United States tends to favor itself in its own news filings.

In this era of deep analytics that harness real-time news and sentiment, the Foundation series from Isaac Asimov is never far from the mind. For those who haven’t read the books, in a very small nutshell, mathematical formulas allow civilization to predict the future course of history…and madness ensues.

All arguments about potential for chaos or leaps forward for civilization aside, advances in analytics and high-performance computing like those produced on the Nautilus supercomputer have brought this series of classic science fiction tales into the realm of possibility.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This