HPC Bests Physicians in Matching Heart Transplant Donors and Recipients

By Michael Feldman

September 13, 2011

Health care analytics is an emerging application area that promises to help cut costs and provide better patient outcomes. To reach that goal though requires sophisticated software that can mimic some of the intelligence of real live physicians. At Lund University and Skåne University in Sweden, researchers are attempting to do just that by building a model of heart-transplant recipients and donors to improve survival times.

The so-called “survival model” is designed to discover the optimal matches between recipients and donor for heart transplants. It takes into account such factors as age, blood type (both donor and recipient), weight, gender, age, and time during a transplant when there is no blood flow to the heart. Just analyzing those six variables leads to about 30,000 distinct combinations to track. When you want to match tens of thousands of recipients and donors across that spread of combinations, you need a rather sophisticated software model and some serious computing horsepower.

To build the application, the Lund researchers used MATLAB and a set of related MathWorks libraries, namely the Neural Network Toolbox, the Parallel Computing Toolbox, and the MATLAB Distributed Computing Server. With that, they built their predictive artificial neural network (ANN) models, in this case, a simulation that predicts survival rates for heart transplant patients based on the suitability of the donor match. The ANN models are “trained” using donor and recipient data encapsulated in two databases: the International Society for Heart and Lung Transplantation (ISHLT) registry and the Nordic Thoracic Transplantation Database (NTTD).

The key software technology for the ANN application is MathWorks’ Neural Network Toolbox.  The package contains tools for designing and simulating neural networks, which can be used for artificial intelligence-type applications such as pattern recognition, quantum chemistry, speech recognition, game-playing and process control.   These types of application don’t lend themselves easily to the type of formal analysis done in traditional computing.

For the ANN models, training involves correlating donor and recipient data, such that the risk factors are weighted accurately. If done correctly, the simulations can become adept at associating these factors with the heart transplant survival rates. In this case, the results from the simulations were used to pick out the best and worst donors for any particular recipient.

The ultimate goal is to determine the mean survival times after transplantation for waiting recipients, so that doctors can make the best possible decision with regard to matches. In the research study, they analyzed about 10,000 patients that had already received transplants in order to verify the accuracy of the algorithms.

What they found was that the ANN models could increase the five-year survival rate raised by 5 to 10 percent compared to the traditional selection criteria performed by practicing physicians. Perhaps more importantly, using a randomized trial based on preliminary results, approximately 20 percent more patients would be considered for transplantation under these models, says Dr. Johan Nilsson, Associate Professor in the Division of Cardiothoracic Surgery at Lund University.

Because of the combinatorial load of the recipient-donor variables, the models are very compute-intensive. On a relative small cluster, the MATLAB-derived ANN simulation took about five days. That was significantly better the open source software packages (R and Python) they started out with. Under that environment, runs took about three to four weeks and were beset with crashes and inaccurate results.

To run the simulation, the researchers used a nine-node Apple Xserve cluster (which includes a head node and a filesharing node), along with 16 TB of disk, all lashed to together with a vanilla GigE network. Memory size on the nodes ranged form 24 to 48 GB. According to Nilsson, with the latest MATLAB configuration, they use 64 CPUs to run the ANN simulation.

Nilsson, who is a physician, programmed the application himself, noting that the MATLAB environment was easy to set up and use, adding there was no need for deep knowledge of parallel computing. The biggest roadblock he encountered was the need to customize an error function (MATLAB Neural Network does not have any cross-entropy error routine.) There were also some problems encountered in setting up the Xserve cluster, but once they replaced Apple’s Xgrid protocol with the MATLAB Distributed Computing Server, many of those problems disappeared.

The Apple Xserve cluster is not exactly state of the art for high performance computing these day. Presumably with a late model HPC setup, they could cut the five-day turnaround time for the simulation even more, which would speed up the research even further.

In the short term, the Lund and Skåne team intend to continue to optimize the software and explore other solutions like regression tree and logistic regression algorithms, as well as add support for vector machines. In parallel, they want to start transitioning the technology into a clinical setting.

According to Nilsson, once they’ve fully cooked the models, they can do away with the high performance computing environment. “In a future clinical setting,” he says, “the application could be used on any desktop computer, and the matching process will take only seconds to a couple of minutes.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Weekly Wire Roundup: July 8-July 12, 2024

July 12, 2024

HPC news can get pretty sleepy in June and July, but this week saw a bump in activity midweek as Americans realized they still had work to do after the previous holiday weekend. The world outside the United States also s Read more…

Nvidia, Intel not Welcomed in New Apple AI and HPC Development Tools

July 12, 2024

New Mac developer tools will leverage Apple's homegrown chips, limiting HPC users' ability to use parallel programming frameworks from Intel or Nvidia. Apple's latest programming framework, Xcode 16, was introduced at Read more…

Virga: Australia’s New HPC and AI Powerhouse

July 11, 2024

Australia has officially added another supercomputer to the TOP500 list with the implementation of Virga. Officially coming online in June 2024, Virga is the newest HPC system to come out of the Australian Commonwealth S Read more…

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and implementation phases of the Quantum Quantum Science and Technolo Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the software, and selecting the best user interface. The National Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three of the 10 highest-ranking Top500 systems, but some other ne Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Generative AI to Account for 1.5% of World’s Power Consumption by 2029

July 8, 2024

Generative AI will take on a larger chunk of the world's power consumption to keep up with the hefty hardware requirements to run applications. "AI chips repres Read more…

US Senators Propose $32 Billion in Annual AI Spending, but Critics Remain Unconvinced

July 5, 2024

Senate leader, Chuck Schumer, and three colleagues want the US government to spend at least $32 billion annually by 2026 for non-defense related AI systems.  T Read more…

Point and Click HPC: High-Performance Desktops

July 3, 2024

Recently, an interesting paper appeared on Arvix called Use Cases for High-Performance Research Desktops. To be clear, the term desktop in this context does not Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Leading Solution Providers

Contributors

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire