HPC Bests Physicians in Matching Heart Transplant Donors and Recipients

By Michael Feldman

September 13, 2011

Health care analytics is an emerging application area that promises to help cut costs and provide better patient outcomes. To reach that goal though requires sophisticated software that can mimic some of the intelligence of real live physicians. At Lund University and Skåne University in Sweden, researchers are attempting to do just that by building a model of heart-transplant recipients and donors to improve survival times.

The so-called “survival model” is designed to discover the optimal matches between recipients and donor for heart transplants. It takes into account such factors as age, blood type (both donor and recipient), weight, gender, age, and time during a transplant when there is no blood flow to the heart. Just analyzing those six variables leads to about 30,000 distinct combinations to track. When you want to match tens of thousands of recipients and donors across that spread of combinations, you need a rather sophisticated software model and some serious computing horsepower.

To build the application, the Lund researchers used MATLAB and a set of related MathWorks libraries, namely the Neural Network Toolbox, the Parallel Computing Toolbox, and the MATLAB Distributed Computing Server. With that, they built their predictive artificial neural network (ANN) models, in this case, a simulation that predicts survival rates for heart transplant patients based on the suitability of the donor match. The ANN models are “trained” using donor and recipient data encapsulated in two databases: the International Society for Heart and Lung Transplantation (ISHLT) registry and the Nordic Thoracic Transplantation Database (NTTD).

The key software technology for the ANN application is MathWorks’ Neural Network Toolbox.  The package contains tools for designing and simulating neural networks, which can be used for artificial intelligence-type applications such as pattern recognition, quantum chemistry, speech recognition, game-playing and process control.   These types of application don’t lend themselves easily to the type of formal analysis done in traditional computing.

For the ANN models, training involves correlating donor and recipient data, such that the risk factors are weighted accurately. If done correctly, the simulations can become adept at associating these factors with the heart transplant survival rates. In this case, the results from the simulations were used to pick out the best and worst donors for any particular recipient.

The ultimate goal is to determine the mean survival times after transplantation for waiting recipients, so that doctors can make the best possible decision with regard to matches. In the research study, they analyzed about 10,000 patients that had already received transplants in order to verify the accuracy of the algorithms.

What they found was that the ANN models could increase the five-year survival rate raised by 5 to 10 percent compared to the traditional selection criteria performed by practicing physicians. Perhaps more importantly, using a randomized trial based on preliminary results, approximately 20 percent more patients would be considered for transplantation under these models, says Dr. Johan Nilsson, Associate Professor in the Division of Cardiothoracic Surgery at Lund University.

Because of the combinatorial load of the recipient-donor variables, the models are very compute-intensive. On a relative small cluster, the MATLAB-derived ANN simulation took about five days. That was significantly better the open source software packages (R and Python) they started out with. Under that environment, runs took about three to four weeks and were beset with crashes and inaccurate results.

To run the simulation, the researchers used a nine-node Apple Xserve cluster (which includes a head node and a filesharing node), along with 16 TB of disk, all lashed to together with a vanilla GigE network. Memory size on the nodes ranged form 24 to 48 GB. According to Nilsson, with the latest MATLAB configuration, they use 64 CPUs to run the ANN simulation.

Nilsson, who is a physician, programmed the application himself, noting that the MATLAB environment was easy to set up and use, adding there was no need for deep knowledge of parallel computing. The biggest roadblock he encountered was the need to customize an error function (MATLAB Neural Network does not have any cross-entropy error routine.) There were also some problems encountered in setting up the Xserve cluster, but once they replaced Apple’s Xgrid protocol with the MATLAB Distributed Computing Server, many of those problems disappeared.

The Apple Xserve cluster is not exactly state of the art for high performance computing these day. Presumably with a late model HPC setup, they could cut the five-day turnaround time for the simulation even more, which would speed up the research even further.

In the short term, the Lund and Skåne team intend to continue to optimize the software and explore other solutions like regression tree and logistic regression algorithms, as well as add support for vector machines. In parallel, they want to start transitioning the technology into a clinical setting.

According to Nilsson, once they’ve fully cooked the models, they can do away with the high performance computing environment. “In a future clinical setting,” he says, “the application could be used on any desktop computer, and the matching process will take only seconds to a couple of minutes.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflops Tianhe-2 and currently with the 93-petaflops TaihuLight. T Read more…

By Tiffany Trader

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present usability and programmability problems that flummox IT shops. Read more…

By Doug Black

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger communities? That question is at the heart of a new study pub Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Google Launches Site to Share its NYC-based Algorithm Research

August 22, 2017

Much of Google’s algorithm development occurs in groups scattered throughout New York City. Yesterday, Google launched a single website - NYC Algorithms and Optimization Team page - to provide a deeper view into all of Read more…

By John Russell

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflop Read more…

By Tiffany Trader

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present u Read more…

By Doug Black

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger c Read more…

By Tiffany Trader

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Leading Solution Providers

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Singularity HPC Container Technology Moves Out of the Lab

May 4, 2017

Last week, Singularity – the fast-growing HPC container technology whose development has been spearheaded by Gregory Kurtzer at Lawrence Berkeley National Lab Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This